Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 176: 116844, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823279

RESUMEN

In contemporary times, tumors have emerged as the primary cause of mortality in the global population. Ongoing research has shed light on the significance of neurotransmitters in the regulation of tumors. It has been established that neurotransmitters play a pivotal role in tumor cell angiogenesis by triggering the transformation of stromal cells into tumor cells, modulating receptors on tumor stem cells, and even inducing immunosuppression. These actions ultimately foster the proliferation and metastasis of tumor cells. Several major neurotransmitters have been found to exert modulatory effects on tumor cells, including the ability to restrict emergency hematopoiesis and bind to receptors on the postsynaptic membrane, thereby inhibiting malignant progression. The abnormal secretion of neurotransmitters is closely associated with tumor progression, suggesting that focusing on neurotransmitters may yield unexpected breakthroughs in tumor therapy. This article presents an analysis and outlook on the potential of targeting neurotransmitters in tumor therapy.


Asunto(s)
Progresión de la Enfermedad , Neoplasias , Neurotransmisores , Humanos , Neurotransmisores/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Animales , Neovascularización Patológica/patología , Neovascularización Patológica/metabolismo
2.
Heliyon ; 10(3): e24809, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318004

RESUMEN

Objective: Animal models of brain and spinal cord metastases of non-small cell lung cancer were established through the intracranial injection of PC-9 Luc cells with a brain stereotaxic device. This method provides a reliable modeling method for studying brain and spinal cord metastases of non-small cell lung cancer. Methods: PC-9 Luc cells at logarithmic growth stage were injected into the skulls of 5-week-old BALB/c nude mice at different cell volumes (30 × 104, 80 × 104) and different locations (using anterior fontanel as a location point, 1 mm from the coronal suture, and 1.5 mm from the sagittal suture on the right upper and right lower side of the skull). After 1 week of cell inoculation, fluorescence signals of tumor cells in the brain and spinal were detected using the IVIS Xenogen Imaging system. After 4 weeks, brain and spinal tissues from the nude mice were harvested. Following paraffin-embedded sectioning, HE staining was performed on the tissues. Results: The fluorescence signals revealed that both brain and spinal cord metastasis occurred in the mice where the cells were injected at the lower right side of the skull. There was only brain metastasis in the nude mice injected with 30 × 104 cells at the upper right side of the skull. Both brain and spinal cord metastasis occurred in the nude mice injected with 80 × 104 cells. The HE staining revealed that both brain and spinal cord metastasis occurred in the mice injected with different amounts of PC-9 Luc cells, consistent with the results detected using the IVIS Xenogen Imaging system, thereby demonstrating the reliability of detecting fluorescent signals in vivo to determine tumor growth. Conclusion: It is a reliable method to establish the animal model of brain and spinal cord metastases of non-small cell lung cancer by injecting different quantities of cells from different positions with a brain stereotaxic device. The IVIS Xenogen Imaging system has high reliability in detecting the fluorescence signals of brain and spinal cord metastatic tumors.

3.
Environ Monit Assess ; 195(6): 749, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37247155

RESUMEN

During the construction process of railways in the plateau region, various types of pollution sources can have serious or even irreversible impacts on the plateau ecology. To address pollution source treatment during the construction process, protect the ecological environment along the railway, and maintain the ecological balance, we collected geological and environmental data and analyzed the influencing factors of pollution sources. Taking sewage as the main research subject, we propose a new method based on the Analytic Hierarchy Process (AHP)-cloud model to classify the pollution source treatment level, establish an index system, and select the ecological environment level, sewage rate, and pollutant characteristics as the three main influencing factors. Finally, we divide the pollution source treatment level into I, II, and III, corresponding to V1 = {I-level} = {high impact}, V2 = {II-level} = {moderate impact}, and V3 = {III-level} = {low impact}. Based on the comprehensive factor weight analysis and the field engineering conditions of the studied railway in the western plateau of China, we classify the pollution source treatment level of six tunnels and propose treatment suggestions for each level. To advance the efficient implementation of environmental protection during the construction of the plateau railway, we propose three policy recommendations that can positively contribute to environmental protection and green development. This work provides theoretical and technical guidance for the treatment of pollution sources in the construction of the plateau railway, which also serves as a significant reference for other similar projects.


Asunto(s)
Proceso de Jerarquía Analítica , Aguas del Alcantarillado , Monitoreo del Ambiente , Contaminación Ambiental , China
4.
Anal Chim Acta ; 1247: 340899, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36781252

RESUMEN

Multianalyte detection and analogue discrimination are extremely valuable frontier areas for their wide applications in environmental, medical, clinical and industrial analyses. Nowadays, researchers rack their brains on how to develop excellent multianalyte chemosensors that have presented huge challenges in designing high-efficient fluorescent sensing materials and constructing high-throughput detection methods. In this paper, we propose a novel strategy to utilize the dual-emission fluorescent detection platform as a lab-on-a-molecule, arising from the disalicylaldehyde-coordinated hybrid H2Qj3/Tb based terbium sensibilization coupled excited-state intramolecular proton transfer effects. Using the statistical analysis (PCA and HCA) for sensing signals of three fluorescence channels (431, 543 and 583 nm), we demonstrate this elaborate chemosensor with multianalyte detection of three species (solvents, anions and cations) and pattern discrimination of analogues. As a result, the H2Qj3/Tb shows great lab-on-a-molecule characters for each set of species, resulting in the easier identification of many critical analytes (e.g., H2O, NO2- and Fe3+) and discrimination of analogues. In addition, it is also proven to be able to provide reliable content determination for an analyte, especially the NO2- (LOD = 0.37 µM), and discrimination for mixed analogues. A combination of easy-to-implement preparation procedure and data analysis technique makes this work promising for not only designing similar lanthanide-based materials but also realizing more high-efficient multianalyte sensing systems towards various potential applications.

5.
Anal Methods ; 15(3): 361-367, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36597717

RESUMEN

Lower alcohols (C1-C7) have a close relationship with our lives and some of them are harmful to our body's health. For example, liquor mixed with a tiny amount of methanol is harmful to our health. Much of this study is about identifying one or two low-level alcohols. How to detect low-level alcohol and high-throughput and distinguish between analogues of alcohol remains a tremendous challenge. In this study, a new large ring Schiff base Sm(III) complex (Sm-2r) is synthesized with a double emission matrix using the template method. Its dynamic imine bond (CN) and organic ligands (H2L2r) with molecular rotor properties can respond to changes in viscosity and polarity in external environments. The PCA method is used to turn the data matrix into a fingerprint spectrum to distinguish different alcohols (C1-C7). Sm-2r enables the quantization of cyclopropyl and glycerol. Linear ranges of cyclopropanol and glycerol are 0-9.0% and 0-3.0% (v/v), respectively. In addition, Sm-2r has an excellent ability to distinguish the mixtures of n-PrOH and i-PrOH, C5H9OH and C6H11OH, n-PeOH and n-HeOH, 1,3-PDO and 1,2-PDO, MeOH and EtOH, 1,2-EG and 1,2-PDO at different volume ratios. We have provided a way to distinguish alcohol species based on their molecular polarity and viscosity.


Asunto(s)
Glicerol , Samario , Samario/química , Metanol , Etanol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...