Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Int Immunopharmacol ; 137: 112402, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908084

RESUMEN

BACKGROUND: Severe combined immunodeficiency (SCID) is the most fatal form of inherited primary immunodeficiency disease. Known molecular defect mutations occur in most children with SCID. METHODS: Herein, we report Adenosine Deaminase-SCID (ADA-SCID) using whole-exome sequencing (WES), explore exome mutational landscape and significance for 17 SCID samples, and verify the mutated exon genes using the Gene Expression Omnibus (GEO) datasets. A total of 250 patients, who were hospitalized at the Neonatal Intensive Care Unit (NICU) of The Seventh Medical Center of the PLA General Hospital for 3 years (from 2017 to 2020), were screened for SCID. We collected mutated genes from the WES data of 17 SCID children. GSE609 and GSE99176 cohorts were used to identify the expressions of mutated exon genes and molecular features in SCID. Gene set variation analyses (GSVA) and correlation analyses were performed. RESULTS: The detection rate with approximately 6.8 % (17/250) of SCID is high in the NICU. A total of 16 genes were identified among 17 SCID samples, of which the Top 2 genes (MUC6 and RP11-683L23.1) might be crucial in the progression of SCID with 94 % mutation frequency. Furthermore, CNN2 and SCGB1C1 had significant co-mutations and may cooperate to affect SCID development. Importantly, the phylogenetic tree classification results of 17 SCID samples are more correlated to MUC6 with the most significant mutations. Expression profiles of seven mutated genes and five mutated genes were documented in GSE609 and GSE99176 cohorts based on microarray, respectively. Several immune-related pathways were significantly enriched, and Foxd4, differing from the other four mutated genes, was inversely correlated with the GSVA-enriched pathway. CONCLUSION: Due to its high detection rate (6.8%) and fatality rate (100%), the inclusion of SCID in newborn screening (NBS) is urgent for children in China. The WES successfully identified several common exonic variants (e.g., MUC6) and depicted the feature of mutations and evolution, which will help develop new diagnostic methods for SCID.


Asunto(s)
Secuenciación del Exoma , Tamizaje Neonatal , Inmunodeficiencia Combinada Grave , Humanos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Recién Nacido , China , Masculino , Femenino , Exones/genética , Mutación , Adenosina Desaminasa/genética
2.
Acta Pharmacol Sin ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834683

RESUMEN

Bruton's tyrosine kinase (BTK) has emerged as a therapeutic target for B-cell malignancies, which is substantiated by the efficacy of various irreversible or reversible BTK inhibitors. However, on-target BTK mutations facilitating evasion from BTK inhibition lead to resistance that limits the therapeutic efficacy of BTK inhibitors. In this study we employed structure-based drug design strategies based on established BTK inhibitors and yielded a series of BTK targeting compounds. Among them, compound S-016 bearing a unique tricyclic structure exhibited potent BTK kinase inhibitory activity with an IC50 value of 0.5 nM, comparable to a commercially available BTK inhibitor ibrutinib (IC50 = 0.4 nM). S-016, as a novel irreversible BTK inhibitor, displayed superior kinase selectivity compared to ibrutinib and significant therapeutic effects against B-cell lymphoma both in vitro and in vivo. Furthermore, we generated BTK inhibitor-resistant lymphoma cells harboring BTK C481F or A428D to explore strategies for overcoming resistance. Co-culture of these DLBCL cells with M0 macrophages led to the polarization of M0 macrophages toward the M2 phenotype, a process known to support tumor progression. Intriguingly, we demonstrated that SYHA1813, a compound targeting both VEGFR and CSF1R, effectively reshaped the tumor microenvironment (TME) and significantly overcame the acquired resistance to BTK inhibitors in both BTK-mutated and wild-type BTK DLBCL models by inhibiting angiogenesis and modulating macrophage polarization. Overall, this study not only promotes the development of new BTK inhibitors but also offers innovative treatment strategies for B-cell lymphomas, including those with BTK mutations.

3.
Phytother Res ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873735

RESUMEN

Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy-induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up-regulated the expression of angiogenic-related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis-angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/ß-catenin pathway. Subsequently, using ovariectomy-induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis-angiogenesis coupling of BMSCs via the Wnt/ß-catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.

4.
Nutrients ; 16(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892715

RESUMEN

NASH (non-alcoholic steatohepatitis) is a severe liver disease characterized by hepatic chronic inflammation that can be associated with the gut microbiota. In this study, we explored the therapeutic effect of Gynostemma pentaphyllum extract (GPE), a Chinese herbal extract, on methionine- and choline-deficient (MCD) diet-induced NASH mice. Based on the peak area, the top ten compounds in GPE were hydroxylinolenic acid, rutin, hydroxylinoleic acid, vanillic acid, methyl vanillate, quercetin, pheophorbide A, protocatechuic acid, aurantiamide acetate, and iso-rhamnetin. We found that four weeks of GPE treatment alleviated hepatic confluent zone inflammation, hepatocyte lipid accumulation, and lipid peroxidation in the mouse model. According to the 16S rRNA gene V3-V4 region sequencing of the colonic contents, the gut microbiota structure of the mice was significantly changed after GPE supplementation. Especially, GPE enriched the abundance of potentially beneficial bacteria such as Akkerrmansia and decreased the abundance of opportunistic pathogens such as Klebsiella. Moreover, RNA sequencing revealed that the GPE group showed an anti-inflammatory liver characterized by the repression of the NF-kappa B signaling pathway compared with the MCD group. Ingenuity Pathway Analysis (IPA) also showed that GPE downregulated the pathogen-induced cytokine storm pathway, which was associated with inflammation. A high dose of GPE (HGPE) significantly downregulated the expression levels of the tumor necrosis factor-α (TNF-α), myeloid differentiation factor 88 (Myd88), cluster of differentiation 14 (CD14), and Toll-like receptor 4 (TLR4) genes, as verified by real-time quantitative PCR (RT-qPCR). Our results suggested that the therapeutic potential of GPE for NASH mice may be related to improvements in the intestinal microenvironment and a reduction in liver inflammation.


Asunto(s)
Microbioma Gastrointestinal , Gynostemma , Enfermedad del Hígado Graso no Alcohólico , Extractos Vegetales , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ratones , Gynostemma/química , Extractos Vegetales/farmacología , Masculino , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología
5.
Materials (Basel) ; 17(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38730763

RESUMEN

This study focuses on the prediction of concrete cover separation (CCS) in reinforced concrete beams strengthened by fiber-reinforced polymer (FRP) in flexure. First, machine learning models were constructed based on linear regression, support vector regression, BP neural networks, decision trees, random forests, and XGBoost algorithms. Secondly, the most suitable model for predicting CCS was identified based on the evaluation metrics and compared with the codes and the researcher's model. Finally, a parametric study based on SHapley Additive exPlanations (SHAP) was carried out, and the following conclusions were obtained: XGBoost is best-suited for the prediction of CCS and codes, and researchers' model accuracy needs to be improved and suffers from over or conservative estimation. The contributions of the concrete to the shear force and the yield strength of the reinforcement are the most important parameters for the CCS, where the shear force at the onset of CCS is approximately proportional to the contribution of the concrete to the shear force and approximately inversely proportional to the yield strength of the reinforcement.

6.
Chem Commun (Camb) ; 60(48): 6190-6193, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38805194

RESUMEN

For the first time, hierarchical porous amorphous metal-organic frameworks (HP-aMOFs) containing ultramicropores, micropores, and mesopores were synthesized by etching a composite of MOF glass (agZIF-76) and ZnO using ammonia. These materials show potential applications in the adsorption of C2 hydrocarbons.

7.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732951

RESUMEN

Industrial process monitoring is a critical application of multivariate time-series (MTS) anomaly detection, especially crucial for safety-critical systems such as nuclear power plants (NPPs). However, some current data-driven process monitoring approaches may not fully capitalize on the temporal-spatial correlations inherent in operational MTS data. Particularly, asynchronous time-lagged correlations may exist among variables in actual NPPs, which further complicates this challenge. In this work, a reconstruction-based MTS anomaly detection approach based on a temporal-spatial transformer is proposed. It employs a two-stage temporal-spatial attention mechanism combined with a multi-scale strategy to learn the dependencies within normal operational data at various scales, thereby facilitating the extraction of temporal-spatial correlations from asynchronous MTS. Experiments on simulated datasets and real NPP datasets demonstrate that the proposed model possesses stronger feature learning capabilities, as evidenced by its improved performance in signal reconstruction and anomaly detection for asynchronous MTS data. Moreover, the proposed TS-Trans model enables earlier detection of anomalous events, which holds significant importance for enhancing operational safety and reducing potential losses in NPPs.

8.
Elife ; 122024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752723

RESUMEN

A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.


Asunto(s)
Factores de Transcripción de Tipo Kruppel , Longevidad , Animales , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Longevidad/genética , Células Asesinas Naturales/inmunología , Neoplasias/genética , Ingeniería Genética , Trasplante de Médula Ósea , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones Transgénicos
9.
World J Stem Cells ; 16(5): 499-511, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38817325

RESUMEN

BACKGROUND: Bone healing is a complex process involving early inflammatory immune regulation, angiogenesis, osteogenic differentiation, and biomineralization. Fracture repair poses challenges for orthopedic surgeons, necessitating the search for efficient healing methods. AIM: To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells (BMSCs) facilitate the process of fracture healing. METHODS: Hydrogels and loaded BMSC-derived exosome (BMSC-exo) gels were characterized to validate their properties. In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process. Hydrogels could recruit macrophages and inhibit inflammatory responses, enhance of human umbilical vein endothelial cell angiogenesis, and promote the osteogenic differentiation of primary cranial osteoblasts. Furthermore, the effect of hydrogel on fracture healing was confirmed using a mouse fracture model. RESULTS: The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration, promoted the formation of large vessels, and enabled functional vascularization during bone repair. These effects were further validated in fracture models. CONCLUSION: We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.

10.
Angew Chem Int Ed Engl ; 63(28): e202404329, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683742

RESUMEN

A hitherto unknown class of C4-symmetric Caryl-Cß (C3, C8, C13, C18) axially chiral porphyrins has been synthesized and the application of their iridium (Ir) complexes in catalytic asymmetric C(sp3)-H functionalization is documented. Cyclotetramerization of enantioenriched axially chiral 2-hydroxymethyl-3-naphthyl pyrroles under mild acidic conditions affords, after oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the C4-symmetric α,α,α,α-atropenantiomer as an only isolable diastereomer. Both regioisomeric Ir(Por*)(CO)(Cl) complexes catalyze the carbene C-H insertion reaction affording the same enantiomer, albeit with slight difference in enantioselectivity. With the optimum Ir-complex 3 e, the 2-substituted arylacetic acid derivatives were generated from diazo compounds and cyclohexadiene in excellent yields and enantioselectivities.

11.
World J Diabetes ; 15(4): 769-782, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38680705

RESUMEN

BACKGROUND: Icariin (ICA), a natural flavonoid compound monomer, has multiple pharmacological activities. However, its effect on bone defect in the context of type 1 diabetes mellitus (T1DM) has not yet been examined. AIM: To explore the role and potential mechanism of ICA on bone defect in the context of T1DM. METHODS: The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining, alizarin red S staining, quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis. A bone defect model was established in T1DM rats. The model rats were then treated with ICA or placebo and micron-scale computed tomography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area. RESULTS: ICA promoted bone marrow mesenchymal stem cell (BMSC) proliferation and osteogenic differentiation. The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers (alkaline phosphatase and osteocalcin) and angiogenesis-related markers (vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1) compared to the untreated group. ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs. In the bone defect model T1DM rats, ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation. Lastly, ICA effectively accelerated the rate of bone formation in the defect area. CONCLUSION: ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.

12.
Molecules ; 29(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38474531

RESUMEN

A enantioselective tandem transformation, concerning asymmetric allylic decarboxylative addition and cyclization of N-nosylimines with vinylethylene carbonates (VECs), in the presence of [Rh(C2H4)2Cl]2, chiral sulfoxide-N-olefin tridentate ligand has been developed. The reaction of VECs with various substituted N-nosylimines proceeded smoothly under mild conditions, providing highly functionalized oxazolidine frameworks in good to high yields with good to excellent enantioselectivity.

13.
Medicine (Baltimore) ; 103(9): e37200, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428848

RESUMEN

RATIONALE: This article presents the case of a patient with recurrent chronic diarrhea and cachexia who was misdiagnosed, followed by a literature review to summarize the reasons for misdiagnosis of POEMS syndrome and the treatment strategies. PATIENT CONCERNS: The diagnosis and treatment of this patient suggest that with the improvement of M-protein detection levels, the diagnosis of patients with low M-protein levels, such as those with POEMS syndrome, has been greatly aided. DIAGNOSES: POEMS syndrome requires polyneuropathy and monoclonal plasma cell proliferation as mandatory diagnostic criteria. Therefore, patients presenting with polyneuropathy should routinely undergo M-protein testing and consider the possibility of POEMS syndrome. INTERVENTIONS: The patient, in this case, was treated primarily with relatively conservative immunomodulatory agents. OUTCOMES: During follow-up after treatment, the patient's diarrhea and malnutrition showed significant improvement. LESSONS SUBSECTIONS: POEMS syndrome has low clinical specificity and a high rate of misdiagnosis. However, once a definitive diagnosis is made, the treatment outcome is favorable.


Asunto(s)
Síndrome POEMS , Humanos , Síndrome POEMS/complicaciones , Síndrome POEMS/diagnóstico , Resultado del Tratamiento , Errores Diagnósticos , Diarrea/complicaciones
14.
Ann Hum Genet ; 88(4): 336-348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38369935

RESUMEN

INTRODUCTION: Increasing evidence implicates retinal vascular occlusions as a susceptibility factor for cardiovascular diseases (CVDs), whereas inconsistent results on the relationship were reported in previous observational studies. This research using a bidirectional two-sample Mendelian randomization (MR) analysis aimed to investigate the potential association between genetically determined central/branch retinal artery and retinal vein occlusions (CRAO/BRAO/RVO) and the risk of CVD. METHODS: Summary statistics of retinal vascular occlusions from the largest available genome-wide association study of European descent were used to investigate their relationship with CVDs, and vice versa. Primary analyses were conducted using the common inverse-variance weighted approach. Several complementary sensitivity analyses were performed to verify the reliability of our results. RESULTS: Inverse variance weighted method showed suggestive effects of genetically determined RVO on ischemic stroke (IS) (odds ratio [OR] = 1.021, 95% confidence [CI] = 1.004-1.037, p = 0.012), a genetic liability to CRAO increased the risk of myocardial infarction (MI) (OR = 1.014, 95% CI = 1.006-1.023, p = 7.0 × 10-4). In addition, genetic predisposition to BRAO had a positive effect on stroke (OR = 1.008, 95% CI = 1.002-1.013, p = 0.011), IS (OR = 1.007, 95% CI = 1.001-1.014, p = 0.022), and cardioembolic stroke (CES) (OR = 1.018, 95% CI = 1.006-1.031, p = 0.004). The point estimates from sensitivity analyses were in the same direction. Reverse MR analyses found no significant evidence for the effect of CVDs on retinal vascular occlusions. CONCLUSION: Our MR study provides potential evidence that retinal vascular occlusions are causally linked to increased risk of CVDs including IS, MI, stroke, and CES. This supports the need for clinical CVD screening in individuals with retinal vascular occlusions. Further investigations are warranted to clarify the effects of CVDs on ocular comorbidities.


Asunto(s)
Enfermedades Cardiovasculares , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Oclusión de la Vena Retiniana , Humanos , Oclusión de la Vena Retiniana/genética , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Oclusión de la Arteria Retiniana/genética
15.
Adv Biol (Weinh) ; 8(4): e2300558, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38329214

RESUMEN

Skeletal muscle atrophy coincides with extensive fibrous tissue hyperplasia in muscle-atrophied patients, and fibrous tissue plays a vital role in skeletal muscle function and hinders muscle fiber regeneration. However, effective drugs to manage skeletal muscle atrophy and fibrosis remain elusive. This study isolated and characterized exosomes derived from skeletal muscle satellite cells (MuSC-Exo). The study investigated their effects on denervated skeletal muscle atrophy and fibrosis in Sprague Dawley (SD) rats via intramuscular injection. MuSC-Exo demonstrated the potential to alleviate skeletal muscle atrophy and fibrosis. The underlying mechanism using single-cell RNA sequencing data and functional analysis are analyzed. Mechanistic studies reveal close associations between fibroblasts and myoblasts, with the transforming growth factor ß1 (TGF-ß1)-Smad3-Pax7 axis governing fibroblast activation in atrophic skeletal muscle. MuSC-Exo intervention inhibited the TGF-ß1/Smad3 pathway and improved muscle atrophy and fibrosis. In conclusion, MuSC-Exo-based therapy may represent a novel strategy to alleviate skeletal muscle atrophy and reduce excessive fibrotic tissue by targeting Pax7 through the TGF-ß1/Smad3 pathway.


Asunto(s)
Exosomas , Células Satélite del Músculo Esquelético , Humanos , Ratas , Animales , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Exosomas/metabolismo , Ratas Sprague-Dawley , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fibrosis
16.
Org Lett ; 26(9): 1970-1974, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38421216

RESUMEN

A well-defined tridentate chiral sulfoxide-N-olefin ligand has been designed and applied in rhodium-catalyzed asymmetric allylic substitutions of racemic allylic carbonates, providing the branched allylic products in good yields with good to high enantioselectivities and excellent regioselectivities. This reaction mechanism, which involves the possible hemilability of olefin coordination on sulfoxide-N-olefin hybrid ligands with rhodium, is elaborated as well.

17.
Inorg Chem ; 63(9): 4185-4195, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364251

RESUMEN

Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.

18.
Eur J Pediatr ; 183(4): 1901-1910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38337095

RESUMEN

The aim of the study was to determine the relationship between flatfoot morphology and body mass and height in children aged 6-12 years. A total of 6471 Chinese children (mean age 9.0 ± 1.9 years, 41% female) were assessed for foot morphometry, body height, and body mass index. Foot morphology, including foot length, width, girth, arch height, hallux valgus angle, and rearfoot valgus angle, was measured using a 3D laser scanner. Flatfoot evaluations were conducted using the Sztriter-Godunov index (KY) from footprints. All measurements were analyzed by age and sex using the mean values of the left and right sides. Comparisons were performed between flatfoot groups, between body mass index (BMI) groups, and between body height groups. The study revealed a significant decrease in the incidence of bipedal flatfoot with age (p < 0.001), whereas the prevalence of obesity remained consistent (p > 0.05). Bipedal flatfoot was associated with distinct morphological changes, including lower arches, reduced instep height, diminished ankle heights and a greater rearfoot valgus angle (p < 0.05). When comparing the BMI groups, overweight children had larger and thicker feet (p < 0.05), but no differences were found in arch height and ankle height (p > 0.05). When comparing the body height groups, short-statured children had a shorter feet girth, shorter arches, and shorter ankle height (p < 0.05), but no differences were found in the rearfoot valgus angle (p > 0.05). CONCLUSION: The main characteristics of flat feet include lower arches and instep heights and ankle heights but higher rearfoot valgus angles. In general, overweight children's feet do not have the common features of flat feet. In contrast, short children had similar features of flatfoot except for rearfoot valgus. Assessment of posture, such as rearfoot valgus, can be critical in identifying children with flat feet. WHAT IS KNOWN: • The morphology of children's feet is associated with body growth, but the relationship between flatfeet and body mass and height remains controversial. WHAT IS NEW: • Three-dimensional foot measurement shows that body mass is generally not associated with flatfeet, while short children have lower arches but no rearfoot valgus.


Asunto(s)
Pie Plano , Niño , Humanos , Femenino , Masculino , Pie Plano/epidemiología , Pie Plano/complicaciones , Sobrepeso , Estatura , Pie/anatomía & histología , Obesidad/complicaciones
19.
Anal Chem ; 96(5): 1941-1947, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38279956

RESUMEN

Appropriate separation and enrichment steps can enhance the performance of SERS assays. For rapid, in-situ detection of carbaryl, a novel PA-6/AuNRs@ZIF-8 film that can be applied to dual-mode separation and SERS detection, has been developed. In the film, PA-6 was used as a TLC substrate for the initial separation of the substance to be measured. ZIF-8 provides chemical enhancement in SERS as well as enrichment and secondary separation of the analytes. Utilizing this film, we have successfully implemented a TLC-SERS rapid detection scheme, resulting in a detection limit for carbaryl as low as 1 × 10-9 M in lake water in 15 min, which is significantly lower than existing standards. Additionally, the manufacturing cost of one PA-6/AuNRs@ZIF-8 film can be kept within the range of $0.20-$0.40 economically, presenting substantial financial advantages. The method is highly promising for pesticide detection as well as forensic in-situ testing.

20.
Mol Ther ; 32(3): 637-645, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38204163

RESUMEN

N-Acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) therapies have received approval for treating both orphan and prevalent diseases. To improve in vivo efficacy and streamline the chemical synthesis process for efficient and cost-effective manufacturing, we conducted this study to identify better designs of GalNAc-siRNA conjugates for therapeutic development. Here, we present data on redesigned GalNAc-based ligands conjugated with siRNAs against angiopoietin-like 3 (ANGPTL3) and lipoprotein (a) (Lp(a)), two target molecules with the potential to address large unmet medical needs in atherosclerotic cardiovascular diseases. By attaching a novel pyran-derived scaffold to serial monovalent GalNAc units before solid-phase oligonucleotide synthesis, we achieved increased GalNAc-siRNA production efficiency with fewer synthesis steps compared to the standard triantennary GalNAc construct L96. The improved GalNAc-siRNA conjugates demonstrated equivalent or superior in vivo efficacy compared to triantennary GalNAc-conjugated siRNAs.


Asunto(s)
Enfermedades Cardiovasculares , Hepatocitos , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química , Análisis Costo-Beneficio , ARN Bicatenario , Acetilgalactosamina/química , Proteína 3 Similar a la Angiopoyetina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...