Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 616, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242870

RESUMEN

Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C2+) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H2 FE) at 150 mA cm-2. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.

2.
Aging (Albany NY) ; 16(2): 1767-1780, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38244583

RESUMEN

Approximately 10% of gastric cancers are associated with Epstein-Barr virus (EBV). Tremella fuciformis polysaccharides (TFPs) are characterized by antioxidative and anti-inflammatory effects in different diseases. However, whether TFP improves EBV-associated gastric cancer (EBVaGC) has never been explored. The effects of TFP on EBV-infected GC cell viability were determined using a CCK-8 assay and flow cytometry. Western blotting and RT-qPCR were performed to explore the expression of ferroptosis-related proteins. The CCK-8 assay showed that TFP decreased EBV-infected GC cell viability in a dose- and time-dependent manner. Flow cytometry assays indicated that TFP significantly induced EBV-infected GC cell death. TFP also reduced the migratory capacity of EBV-infected GC cells. Furthermore, treatment with TFP significantly increased the mRNA levels of PTGS2 and Chac1 in EBV-infected GC cells. Western blot assays indicated that TFP suppressed the expression of NRF2, HO-1, GPX4 and xCT in EBV-infected GC cells. More importantly, overexpression of NRF2 could obviously rescue TFP-induced downregulation of GPX4 and xCT in EBV-infected GC cells. In summary, we showed novel data that TFP induced ferroptosis in EBV-infected GC cells by inhibiting NRF2/HO-1 signaling. The current findings may shed light on the potential clinical application of TFP in the treatment of EBVaGC.


Asunto(s)
Basidiomycota , Infecciones por Virus de Epstein-Barr , Ferroptosis , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Neoplasias Gástricas/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sincalida/metabolismo
3.
J Cell Mol Med ; 26(21): 5539-5550, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36251949

RESUMEN

Larotrectinib (Lar) is a highly selective and potent small-molecule inhibitor used in patients with tropomyosin receptor kinase (TRK) fusion-positive cancers, including colon cancer. However, the underlying molecular mechanisms specifically in patients with colon cancer have not yet been explored. Our data showed that Lar significantly suppressed proliferation and migration of colon cancer cells. In addition, Lar suppressed the epithelial-mesenchymal transition (EMT) process, as evidenced by elevation in E-cadherin (E-cad), and downregulation of vimentin and matrix metalloproteinase (MMP) 2/9 expression. Furthermore, Lar was found to activate autophagic flux, in which Lar increased the ratio between LC3II/LC3I and decreased the expression of p62 in colon cancer cells. More importantly, Lar also increased AMPK phosphorylation and suppressed mTOR phosphorylation in colon cancer cells. However, when we silenced AMPK in colon cancer cells, Lar-induced accumulation of autolysomes as well as Lar-induced suppression of the EMT process were significantly diminished. An in vivo assay also confirmed that tumour volume and weight decreased in Lar-treated mice than in control mice. Taken together, this study suggests that Lar significantly suppresses colon cancer proliferation and migration by activating AMPK/mTOR-mediated autophagic cell death.


Asunto(s)
Muerte Celular Autofágica , Neoplasias del Colon , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Neoplasias del Colon/tratamiento farmacológico , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Proliferación Celular/fisiología
4.
ACS Nano ; 16(6): 9523-9534, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35616603

RESUMEN

Two-dimensional metal-organic frameworks (MOFs) have served as favorable prototypes for electrocatalytic oxygen evolution reaction (OER). Despite promising catalytic activity, their OER reaction kinetics are still limited by the sluggish four-electron transfer process. Herein, we develop a ferrocene carboxylic acid (FcCA) partially substituted cobalt-terephthalic acid (CoBDC) catalyst with a bifunctional microreactor composed of two species of Co active sites and ligand FcCA (CoBDC FcCA). Benefiting from the ultrathin nanosheet structure, CoBDC FcCA catalyst exhibits an excellent OER performance with a low overpotential of 280 mV to reach 10 mA cm-2 and a small Tafel slope of 53 mV dec-1. Structure characterization together with theoretical calculations directly unravel the coordination for two species of Co active moieties with FcCA forming a microreactor of tensile strain, leading to a conversion of the Co spin from a high spin state (t2g5eg2) to an intermediate spin state (t2g6eg1) to regulate antibonding states of Co 3d and O 2p orbital. In situ spectroscopic measurements for mechanistic understanding reveal that this CoBDC FcCA catalyst possesses an optimal OH* adsorption energy for propitious formation of O-O bonds in the OOH* intermediate, thus effectively decreasing the thermodynamic Gibbs free energy of the rate-determining step (O* → OOH*) to accelerate reaction kinetics for the whole OER process. When loaded on an integrated BiVO4 photoanode as a cocatalyst, CoBDC FcCA enables highly active solar-driven oxygen production from water splitting.

5.
Adv Mater ; 34(28): e2202240, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35522454

RESUMEN

The electrochemical nitrogen reduction reaction (e-NRR) is envisaged as alternative technique to the Haber-Bosch process for NH3 synthesis. However, how to develop highly active e-NRR catalysts faces daunting challenges. Herein, a viable strategy to manipulate local spin state of isolated iron sites through S-coordinated doping (FeSA -NSC) is reported. Incorporation of S in the coordination of FeSA -NSC can induce the transition of spin-polarization configuration with the formation of a medium-spin-state of Fe (t2g 6 eg 1), which is beneficial for facilitating eg electrons to penetrate the antibonding π-orbital of nitrogen. As a consequence, a record-high current density up to 10 mA cm-2 can be achieved, together with a high NH3 selectivity of ≈10% in a flow cell reactor. Both experimental and theoretical analyses indicate that the monovalent Fe(I) atomic center in the FeSA -NSC after the S doping accelerates the N2 activation and protonation in the rate-determining step of *N2 to *NNH.

6.
Adv Mater ; 34(2): e2103548, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34725867

RESUMEN

Developing highly active and stable nitrogen reduction reaction (NRR) catalysts for NH3 electrosynthesis remains challenging. Herein, an unusual NRR electrocatalyst is reported with a single Zn(I) site supported on hollow porous N-doped carbon nanofibers (Zn1 N-C). The Zn1 N-C nanofibers exhibit an outstanding NRR activity with a high NH3 yield rate of ≈16.1 µg NH3 h-1 mgcat -1 at -0.3 V and Faradaic efficiency (FE) of 11.8% in alkaline media, surpassing other previously reported carbon-based NRR electrocatalysts with transition metals atomically dispersed and nitrogen coordinated (TM-Nx ) sites. 15 N2 isotope labeling experiments confirm that the feeding nitrogen gas is the only nitrogen source in the production of NH3 . Structural characterization reveals that atomically dispersed Zn(I) sites with Zn-N4 moieties are likely the active sites, and the nearby graphitic N site synergistically facilitates the NRR process. In situ attenuated total reflectance-Fourier transform infrared measurement and theoretical calculation elucidate that the formation of initial *NNH intermediate is the rate-limiting step during the NH3 production. The graphitic N atoms adjacent to the tetracoordinate Zn-N4 moieties could significantly lower the energy barrier for this step to accelerate hydrogenation kinetics duing the NRR.

7.
Angew Chem Int Ed Engl ; 61(7): e202111683, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34608726

RESUMEN

Electrocatalytic reduction of CO2 (CO2 RR) to value-added chemicals is of great significance for CO2 utilization, however the CO2 RR process involving multi-electron and proton transfer is greatly limited by poor selectivity and low yield. Herein, We have developed an atomically dispersed monovalent zinc catalyst anchored on nitrogenated carbon nanosheets (Zn/NC NSs). Benefiting from the unique coordination environment and atomic dispersion, the Zn/NC NSs exhibit a superior CO2 RR performance, featuring a high current density up to 50 mA cm-2 with an outstanding CO Faradaic efficiency of ≈95 %. The center ZnI atom coordinated with three N atoms and one N atom that bridges over two adjacent graphitic edges (Zn-N3+1 ) is identified as the catalytically active site. Experimental results reveal that the twisted Zn-N3+1 structure accelerates CO2 activation and protonation in the rate-determining step of *CO2 to *COOH, while theoretical calculations elucidate that atomically dispersed Zn-N3+1 moieties decrease the potential barriers for intermediate COOH* formation, promoting the proton-coupled CO2 RR kinetics and boosting the overall catalytic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...