Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134279, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613960

RESUMEN

The application of antibiotics in freshwater aquaculture leads to increased contamination of aquatic environments. However, limited information is available on the co-metabolic biodegradation of antibiotics by microalgae in aquaculture. Feedstuffs provide multiple organic substrates for microalgae-mediated co-metabolism. Herein, we investigated the co-metabolism of sulfamethoxazole (SMX) by Chlorella pyrenoidosa when adding main components of feedstuff (glucose and lysine). Results showed that lysine had an approximately 1.5-fold stronger enhancement on microalgae-mediated co-metabolism of SMX than glucose, with the highest removal rate (68.77% ± 0.50%) observed in the 9-mM-Lys co-metabolic system. Furthermore, we incorporated reactive sites predicted by density functional theory calculations, 14 co-metabolites identified by mass spectrometry, and the roles of 18 significantly activated enzymes to reveal the catalytic reaction mechanisms underlying the microalgae-mediated co-metabolism of SMX. In lysine- and glucose-treated groups, five similar co-metabolic pathways were proposed, including bond breaking on the nucleophilic sulfur atom, ring cleavage and hydroxylation at multiple free radical reaction sites, together with acylation and glutamyl conjugation on electrophilic nitrogen atoms. Cytochrome P450, serine hydrolase, and peroxidase play crucial roles in catalyzing hydroxylation, bond breaking, and ring cleavage of SMX. These findings provide theoretical support for better utilization of microalgae-driven co-metabolism to reduce sulfonamide antibiotic residues in aquaculture.


Asunto(s)
Acuicultura , Chlorella , Glucosa , Microalgas , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/metabolismo , Sulfametoxazol/química , Microalgas/metabolismo , Chlorella/metabolismo , Glucosa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Lisina/metabolismo , Lisina/química , Biodegradación Ambiental , Redes y Vías Metabólicas , Antibacterianos/metabolismo , Antibacterianos/química
2.
J Hazard Mater ; 469: 133978, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38461667

RESUMEN

The expansion of aquaculture produces increasing pollutant loads, necessitating the use of drainage systems to discharge wastewater into surface water. To assess the mass variations and transfer process of aquaculture wastewater, an entire aquaculture drainage investigation lasting for 48 h was conducted, focusing on the nutrients, heavy metals, dissolved organic matter (DOM), and physicochemical properties of drainage in a commercial shrimp farm. The findings revealed that early drainage produced more heavy metals, total nitrogen (TN), dissolved organic nitrogen (DON), and feed-like proteins from aquaculture floating feed and additives, whereas late drainage produced more PO43--P and total dissolved phosphorus (TP). A few pollutants, including DON, Cu, and feed-like proteins, were effectively removed, whereas the contents of TN, dissolved inorganic nitrogen, and Zn increased in the multi-level aquaculture drainage system. Limited dilution indicated that in-stream transfer was the main process shaping pollutant concentrations within the drainage system. In the lower ditches, NO3--N, heavy metals, and feed-like proteins exhibited evident in-stream attenuation, while TN and NH4+-N underwent significant in-stream enrichment processes, especially in ditch C, with the transfer coefficient values (vf) of -1.74E-5 and -2.04E-5. This indicates that traditional aquaculture drainage systems serve as nitrogen sinks, rather than efficient nutrient purge facilitators. Notably, DOM was identified as a more influential factor in shaping the in-stream transfer process in aquaculture drainage systems, with an interpretation rate 40.79% higher than that of the physiochemical properties. Consequently, it is necessary to eliminate the obstacles posed by DOM to pollutant absorption and net zero emissions in aquaculture drainage systems in the future. ENVIRONMENTAL IMPLICATIONS: Nutrients, heavy metals, and dissolved organic matter are hazardous pollutants originating from high-density aquaculture. As the sole conduit to natural waters, aquaculture drainage systems have pivotal functions in receiving and purifying wastewater, in which the in-stream transfer process is affected by ambient conditions. This field study investigated the spatial variations, stage distinctions, effects of physicochemical properties, and dissolved organic matter (DOM) features. This finding suggests that the aquaculture drainage system as a nitrogen sink and DOM source. While the DOM is the key factor in shaping the in-stream transfer process, and obstacles for pollutant elimination. This study helps in understanding the fate of aquaculture pollutants and reveals the drawbacks of traditional aquaculture drainage systems.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Materia Orgánica Disuelta , Aguas Residuales , Agricultura , Acuicultura , Nitrógeno/química
3.
Environ Sci Technol ; 57(43): 16219-16231, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37847491

RESUMEN

Disinfection byproducts (DBPs) in drinking water are mainly exposed to the human body after oral ingestion and degradation in the gastrointestinal tract. The role of gastrointestinal degradation in the toxic effects of DBPs still needs further investigation. In this study, the degradation of five categories of DBPs (22 DBPs) in the stomach and small intestine was investigated based on a semicontinuous steady-state gastrointestinal simulation system, and 22 DBPs can be divided into three groups based on their residual proportions. The degradation of chloroacetonitrile (CAN), dibromoacetic acid (DBAA), and tetrabromopyrrole (FBPy) was further analyzed based on the Simulator of the Human Intestinal Microbial Ecosystem inoculating the gut microbiota, and approximately 60% of CAN, 45% of DBAA, and 80% of FBPy were degraded in the stomach and small intestine, followed by the complete degradation of remaining DBPs in the colon. Meanwhile, gastrointestinal degradation can reduce oxidative stress-mediated DNA damage and apoptosis induced by DBPs in DLD-1 cells, but the toxicity of DBPs did not disappear with the complete degradation of DBPs, possibly because of their interferences on gut microbiota. This study provides new insights into investigating the gastrointestinal toxic effects and mechanisms of DBPs through oral exposure.


Asunto(s)
Desinfectantes , Agua Potable , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Desinfectantes/toxicidad , Desinfectantes/análisis , Desinfección , Tracto Gastrointestinal/química , Halogenación , Contaminantes Químicos del Agua/toxicidad
4.
Sci Total Environ ; 903: 166581, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634728

RESUMEN

Expanding aquaculture has generated pollutants like fishery drugs in wastewater, which affects the aquatic environments and hinders sustainable development of aquaculture. To evaluate the occurrence, mass fluxes and production factors of fishery drugs in aquaculture, full-aquaculture-cycle monitoring in finfish and crustacean wastewater was conducted in the lower Yangtze River Basin, and 28 pesticides and 15 antibiotics were detected. The results showed that individual fishery drugs varied from ppt to ppb levels. Among them, sulfonamides were dominant with a mean concentration of 105.95 ± 4.13 ng·L-1 in finfish aquacultural wastewater, and insecticides were prevailing in crustacean aquacultural wastewater with a content of 146.56 ± 0.66 ng·L-1. Since the susceptibility to finfish disease determined the aquaculture practice, there were significant differences between two types of aquacultural wastewater. Finfish aquacultural wastewater contained more drugs and reached peak earlier in rapid-growth period, yet crustacean aquacultural wastewater peaked at the harvest period, to prevent against disease. Meanwhile, higher ecological risk, especially for florfenicol, were found in finfish wastewater. With 6 production factors from Good Aquaculture Practice, the gross yield was the most influential factor of drug mass flux, explaining 98 % variance by stepwise regression. Apart from increasing concentrations of fishery drugs in wastewater, regional high-yield aquaculture also significantly impacted the corresponding mass flux. As estimated by linear regression, 1.63 tons of target drugs would be discharged by 1 Mt. aquatic products, and 7.77 tons were discharged from aquaculture in the lower Yangtze River Basin in 2021. This is the first report to quantify mass fluxes of fishery drugs and to highlight gross yield as the most influential factor, which provides guidance for the supervision and regulation of sustainable aquaculture.

5.
Front Microbiol ; 13: 991818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177464

RESUMEN

Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts (DBPs) have been widely found in drinking water and are receiving more and more attentions because of their high cytotoxicity, genotoxicity, and developmental toxicity. However, the effects of HNMs exposure on the intestinal tract and intestinal flora remain unknown. This study comprehensively determined the effects of trichloronitromethane, bromonitromethane, and bromochloronitromethane exposure on the intestinal tract and intestinal flora. Results showed that the three HNMs induced intestinal oxidative stress and inflammatory response. Further, HNMs exposure could change the diversities and community structure of intestinal flora, thereby triggering intestinal flora dysbiosis, which might be associated with the intestinal damage such as oxidative stress and inflammation. The intestinal flora dysbiosis was accompanied with mark alterations in function of intestinal flora, such as carbohydrate, lipid, and amino acid metabolisms. This research provides a new insight into studying the toxicity of HNMs exposure based on intestinal flora, which will further improve the health risk assessment of DBPs in drinking water.

6.
Artículo en Inglés | MEDLINE | ID: mdl-34072529

RESUMEN

Asthma is a chronic inflammatory disease that can be caused by various factors, such as asthma-related genes, lifestyle, and air pollution, and it can result in adverse impacts on asthmatics' mental health and quality of life. Hence, asthma issues have been widely studied, mainly from demographic, socioeconomic, and genetic perspectives. Although it is becoming increasingly clear that asthma is likely influenced by green spaces, the underlying mechanisms are still unclear and inconsistent. Moreover, green space influences the prevalence of asthma concurrently in multiple ways, but most existing studies have explored only one pathway or a partial pathway, rather than the multi-pathways. Compared to greenness (measured by Normalized Difference Vegetation Index, tree density, etc.), green space structure-which has the potential to impact the concentration of air pollution and microbial diversity-is still less investigated in studies on the influence of green space on asthma. Given this research gap, this research took Toronto, Canada, as a case study to explore the two pathways between green space structure and the prevalence of asthma based on controlling the related covariates. Using regression analysis, it was found that green space structure can protect those aged 0-19 years from a high risk of developing asthma, and this direct protective effect can be enhanced by high tree diversity. For adults, green space structure does not influence the prevalence of asthma unless moderated by tree diversity (a measurement of the richness and diversity of trees). However, this impact was not found in adult females. Moreover, the hypothesis that green space structure influences the prevalence of asthma by reducing air pollution was not confirmed in this study, which can be attributed to a variety of causes.


Asunto(s)
Contaminación del Aire , Asma , Adulto , Contaminación del Aire/efectos adversos , Asma/epidemiología , Canadá , Femenino , Humanos , Parques Recreativos , Prevalencia , Calidad de Vida
7.
Artículo en Inglés | MEDLINE | ID: mdl-31906286

RESUMEN

A high greenness level can enhance green space use and outdoor physical activity. However, rapid urbanization and high-density development have led to the loss or fragmentation of green space, especially urban public green space (PGS). With the aim of increasing the health benefits from PGS, some planners and researchers suggest connecting existing PGSs to encourage urban residents to use the PGS, and thus, to improve public health. Does this suggestion stand with robustness? By taking 42 sub-districts in the inner area of Wuhan as the study objects, this paper examines the correlation between the connectivity of PGS and its use. We also explore how the characteristics of PGS and the facilities/functions in the neighboring areas influence this relationship by using Location Based Service data (WeChat-Yichuxing data), point of interest (POI) data, and remote-sensing image, etc. Using Regression Analysis, we found that there is no high correlation between PGS use and its connectivity. The possible causes might be attributed to the fact that PGS use is profoundly influenced by multifaceted competing impact factors, and no one can stand dominantly. It is interesting to see that the density of companies is positively, but slightly, related to PGS use.


Asunto(s)
Ambiente , Parques Recreativos , Humanos , Parques Recreativos/estadística & datos numéricos , Salud Pública , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...