Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(2): 443-455, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33277628

RESUMEN

Neural communication orchestrates a variety of behaviors, yet despite impressive effort, delineating transmission properties of neuromodulatory communication remains a daunting task due to limitations of available monitoring tools. Recently developed genetically encoded neurotransmitter sensors, when combined with superresolution and deconvolution microscopic techniques, enable the first micro- and nano-scopic visualization of neuromodulatory transmission. Here we introduce this image analysis method by presenting its biophysical foundation, practical solutions, biological validation, and broad applicability. The presentation illustrates how the method resolves fundamental synaptic properties of neuromodulatory transmission, and the new data unveil unexpected fine control and precision of rodent and human neuromodulation. The findings raise the prospect of rapid advances in the understanding of neuromodulatory transmission essential for resolving the physiology or pathogenesis of various behaviors and diseases.


Asunto(s)
Encéfalo , Neurotransmisores
2.
Biomacromolecules ; 21(12): 4724-4736, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32816463

RESUMEN

Demyelinating injuries and diseases, like multiple sclerosis, affect millions of people worldwide. Oligodendrocyte precursor cells (OPCs) have the potential to repair demyelinated tissues because they can both self-renew and differentiate into oligodendrocytes (OLs), the myelin producing cells of the central nervous system (CNS). Cell-matrix interactions impact OPC differentiation into OLs, but the process is not fully understood. Biomaterial hydrogel systems help to elucidate cell-matrix interactions because they can mimic specific properties of native CNS tissues in an in vitro setting. We investigated whether OPC maturation into OLs is influenced by interacting with a urokinase plasminogen activator (uPA) degradable extracellular matrix (ECM). uPA is a proteolytic enzyme that is transiently upregulated in the developing rat brain, with peak uPA expression correlating with an increase in myelin production in vivo. OPC-like cells isolated through the Mosaic Analysis with Double Marker technique (MADM OPCs) produced low-molecular-weight uPA in culture. MADM OPCs were encapsulated into two otherwise similar elastin-like protein (ELP) hydrogel systems: one that was uPA degradable and one that was nondegradable. Encapsulated MADM OPCs had similar viability, proliferation, and metabolic activity in uPA degradable and nondegradable ELP hydrogels. Expression of OPC maturation-associated genes, however, indicated that uPA degradable ELP hydrogels promoted MADM OPC maturation although not sufficiently for these cells to differentiate into OLs.


Asunto(s)
Células Precursoras de Oligodendrocitos , Animales , Diferenciación Celular , Células Cultivadas , Elastina , Hidrogeles , Oligodendroglía , Ratas , Activador de Plasminógeno de Tipo Uroquinasa/genética
3.
Nano Lett ; 20(6): 4073-4083, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396366

RESUMEN

How neuromodulatory transmitters diffuse into the extracellular space remains an unsolved fundamental biological question, despite wide acceptance of the volume transmission model. Here, we report development of a method combining genetically encoded fluorescent sensors with high-resolution imaging and analysis algorithms which permits the first direct visualization of neuromodulatory transmitter diffusion at various neuronal and non-neuronal cells. Our analysis reveals that acetylcholine and monoamines diffuse at individual release sites with a spread length constant of ∼0.75 µm. These transmitters employ varied numbers of release sites, and when spatially close-packed release sites coactivate they can spillover into larger subcellular areas. Our data indicate spatially restricted (i.e., nonvolume) neuromodulatory transmission to be a prominent intercellular communication mode, reshaping current thinking of control and precision of neuromodulation crucial for understanding behaviors and diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...