Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 14(8): 5665-5681, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144048

RESUMEN

Background: Preoperative grading gliomas is essential for therapeutic clinical decision-making. Current non-invasive imaging modality for glioma grading were primarily focused on magnetic resonance imaging (MRI) or positron emission tomography (PET) of the tumor region. However, these methods overlook the peritumoral region (PTR) of tumor and cannot take full advantage of the biological information derived from hybrid-imaging. Therefore, we aimed to combine multiparameter from hybrid 18F-fluorodeoxyglucose (18F-FDG) PET/MRI of the solid component and PTR were combined for differentiating high-grade glioma (HGG) from low-grade glioma (LGG). Methods: A total of 76 patients with pathologically confirmed glioma (41 HGG and 35 LGG) who underwent simultaneous 18F-FDG PET, arterial spin labelling (ASL), and diffusion-weighted imaging (DWI) with hybrid PET/MRI were retrospectively enrolled. The relative maximum standardized uptake value (rSUVmax), relative cerebral blood flow (rCBF), and relative minimum apparent diffusion coefficient (rADCmin) for the solid component and PTR at different distances outside tumoral border were compared. Receiver operating characteristic (ROC) curves were applied to assess the grading performance. A nomogram for HGG prediction was constructed. Results: HGGs displayed higher rSUVmax and rCBF but lower rADCmin in the solid component and 5 mm-adjacent PTR, lower rADCmin in 10 mm-adjacent PTR, and higher rCBF in 15- and 20-mm-adjacent PTR. rSUVmax in solid component performed best [area under the curve (AUC) =0.865] as a single parameter for grading. Combination of rSUVmax in the solid component and adjacent 20 mm performed better (AUC =0.881). Integration of all 3 indicators in the solid component and adjacent 20 mm performed the best (AUC =0.928). The nomogram including rSUVmax, rCBF, and rADCmin in the solid component and 5-mm-adjacent PTR predicted HGG with a concordance index (C-index) of 0.906. Conclusions: Multiparametric 18F-FDG PET/MRI from the solid component and PTR performed excellently in differentiating HGGs from LGGs. It can be used as a non-invasive and effective tool for preoperative grade stratification of patients with glioma, and can be considered in clinical practice.

2.
Eur Radiol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528135

RESUMEN

OBJECTIVES: To distinguish isocitrate dehydrogenase (IDH) genotypes and tumor subtypes of adult-type diffuse gliomas based on the fifth edition of the World Health Organization classification of central nervous system tumors (WHO CNS5) in 2021 using standard, high, and ultra-high b-value diffusion-weighted imaging (DWI). MATERIALS AND METHODS: This prospective study enrolled 70 patients with adult-type diffuse gliomas who underwent multiple b-value DWI. Apparent diffusion coefficient (ADC) values including ADCb500/b1000, ADCb500/b2000, ADCb500/b3000, ADCb500/b4000, ADCb500/b6000, ADCb500/b8000, and ADCb500/b10000 in tumor parenchyma (TP) and contralateral normal-appearing white matter (NAWM) were calculated. The ADC ratios of TP/NAWM were assessed for correlations with IDH genotypes, tumor subtypes, and Ki-67 status; diagnostic performances were compared. RESULTS: All ADCs were significantly higher in IDH mutant gliomas than in IDH wild-type gliomas (p < 0.01 for all); ADCb500/b8000 had the highest area under the curve (AUC) of 0.866. All ADCs were significantly lower in glioblastoma than in astrocytoma (p < 0.01 for all). ADCs other than ADCb500/b1000 were significantly lower in glioblastoma than in oligodendroglioma (p < 0.05 for all). ADCb500/b8000 and ADCb500/b10000 were significantly higher in oligodendroglioma than in astrocytoma (p = 0.034 and 0.023). The highest AUCs were 0.818 for ADCb500/b6000 when distinguishing glioblastoma from astrocytoma, 0.979 for ADCb500/b8000 and ADCb500/b10000 when distinguishing glioblastoma from oligodendroglioma, and 0.773 for ADCb500/b10000 when distinguishing astrocytoma from oligodendroglioma. Additionally, all ADCs were negatively correlated with Ki-67 status (p < 0.05 for all). CONCLUSION: Ultra-high b-value DWI can reliably separate IDH genotypes and tumor subtypes of adult-type diffuse gliomas using WHO CNS5 criteria. CLINICAL RELEVANCE STATEMENT: Ultra-high b-value diffusion-weighted imaging can accurately distinguish isocitrate dehydrogenase genotypes and tumor subtypes of adult-type diffuse gliomas, which may facilitate personalized treatment and prognostic assessment for patients with glioma. KEY POINTS: • Ultra-high b-value diffusion-weighted imaging can accurately distinguish subtle differences in water diffusion among biological tissues. • Ultra-high b-value diffusion-weighted imaging can reliably separate isocitrate dehydrogenase genotypes and tumor subtypes of adult-type diffuse gliomas. • Compared with standard b-value diffusion-weighted imaging, high and ultra-high b-value diffusion-weighted imaging demonstrate better diagnostic performances.

3.
Front Endocrinol (Lausanne) ; 14: 1167756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143721

RESUMEN

Objective: This study aimed to analyze the effect of urate deposition (UD) on bone erosion and examine the association between the volume of monosodium urate (MSU) crystals and an improved bone erosion score method, as measured in the metatarsophalangeal (MTP) joints of patients with gout. Materials and methods: Fifty-six patients diagnosed with gout using the 2015 European League Against Rheumatism and American College of Rheumatology criteria were enrolled. MSU crystals volume at each MTP joint was measured using dual-energy computed tomography (DECT) images. The degree of bone erosion was evaluated with the modified Sharp/van der Heijde (SvdH) erosion scoring system based on CT images. Differences in clinical features between patients with (UD group) and without (non-UD group) UD were assessed, and the correlation between erosion scores and urate crystal volume was analyzed. Results: The UD and non-UD groups comprised 30 and 26 patients, respectively. Among the 560 MTP joints assessed, 80 showed MSU crystal deposition, and 108 showed bone erosion. Bone erosion occurred in both groups but was significantly less severe in the non-UD group (p <0.001). Both groups had equivalent levels of serum uric acid (p=0.200). Symptom duration was significantly longer in the UD group (p=0.009). The UD group also had a higher rate of kidney stones (p=0.023). The volume of MSU crystals was strongly and positively associated with the degree of bone erosion (r=0.714, p <0.001). Conclusion: This study found that patients with UD show significant increased bone erosion than those without UD. The volume of MSU crystals is associated with the improved SvdH erosion score based on CT images, regardless of serum uric acid level, demonstrating the potential of combining DECT and serum uric acid measurements in helping optimize the management of patients with gout.


Asunto(s)
Gota , Ácido Úrico , Humanos , Tomografía Computarizada por Rayos X/métodos , Gota/complicaciones , Gota/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA