Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(8): 3998-4007, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372233

RESUMEN

Tomato wilt disease caused by Fusarium oxysporum f. sp. lycopersici (Fol) results in a decrease in tomato yield and quality. Pyraclostrobin, a typical quinone outside inhibitor (QoI), inhibits the cytochrome bc1 complex to block energy transfer. However, there is currently limited research on the effectiveness of pyraclostrobin against Fol. In this study, we determined the activity of pyraclostrobin against Fol and found the EC50 values for pyraclostrobin against 100 Fol strains (which have never been exposed to QoIs before). The average EC50 value is 0.3739 ± 0.2413 µg/mL, indicating a strong antifungal activity of pyraclostrobin against Fol, as shown by unimodal curves of the EC50 values. Furthermore, we generated five resistant mutants through chemical taming and identified four mutants with high-level resistance due to the Cytb-G143S mutation and one mutant with medium-level resistance due to the Cytb-G137R mutation. The molecular docking results indicate that the Cytb-G143S or Cytb-G137R mutations of Fol lead to a change in the binding mode of Cytb to pyraclostrobin, resulting in a decrease in affinity. The resistant mutants exhibit reduced fitness in terms of mycelial growth (25 and 30 °C), virulence, and sporulation. Moreover, the mutants carrying the Cytb-G143S mutation suffer a more severe fitness penalty compared to those carrying the Cytb-G137R mutation. There is a positive correlation observed among azoxystrobin, picoxystrobin, fluoxastrobin, and pyraclostrobin for resistant mutants; however, no cross-resistance was detected between pyraclostrobin and pydiflumetofen, prochloraz, or cyazofamid. Thus, we conclude that the potential risk of resistance development in Fol toward pyraclostrobin can be categorized as ranging from low to moderate.


Asunto(s)
Fusarium , Solanum lycopersicum , Estrobilurinas , Simulación del Acoplamiento Molecular , Fusarium/genética , Enfermedades de las Plantas/microbiología
2.
Pestic Biochem Physiol ; 196: 105595, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945245

RESUMEN

Fusarium solani is responsible for causing root rot in various crops, resulting in wilting and eventual demise. Phenamacril, a specific inhibitor of myosin5 protein, has gained recognition as an effective fungicide against a broad spectrum of Fusarium species. It has been officially registered for controlling Fusarium diseases through spray application, root irrigation, and seed dipping. In this study, phenamacril was observed to exhibit negligible inhibitory effects on F. solani causing crop root rot, despite the absence of prior exposure to phenamacril. Considering the high selectivity of phenamacril, this phenomenon was attributed to intrinsic resistance and further investigated for its underlying mechanism. Sequence alignment analysis of myosin5 proteins across different Fusarium species revealed significant differences at positions 218 and 376. Subsequent homology modeling and molecular docking results indicated that substitutions T218S, K376M, and T218S&K376M impaired the binding affinity between phenamacril and myosin5 in F. solani. Mutants carrying these substitutions were generated via site-directed mutagenesis. A phenamacril-sensitivity test showed that the EC50 values of mutants carrying T218S, K376M, and T218S&K376M were reduced by at least 6.13-fold, 9.66-fold, and 761.90-fold respectively compared to the wild-type strain. Fitness testing indicated that mutants carrying K376M or T218S&K376M had reduced sporulation compared to the wild-type strain. Additionally, mutants carrying T218S exhibited an enhanced virulence compared to the wild-type strain. However, there were no significant differences observed in mycelial growth rates between the mutants and the wild-type strain. Thus, the intrinsic differences observed at positions 218 and 376 in myosin5 between F. solani and other Fusarium species are specifically associated with phenamacril resistance. The identification of these resistance-associated positions in myosin5 of F. solani has significantly contributed to the understanding of phenamacril resistance mechanisms, thereby discouraging the use of phenamacril for controlling F. solani.


Asunto(s)
Fungicidas Industriales , Fusarium , Fungicidas Industriales/farmacología , Simulación del Acoplamiento Molecular
3.
J Org Chem ; 86(24): 18278-18286, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34870429

RESUMEN

α-Aminophosphonate analogues containing a phthalazine skeleton were efficiently obtained by a new transition-metal-free addition of dialkyl phosphites to phthalazin-2-ium bromide under mild conditions. A mechanistic study using isotope labeling and radical inhibition experiment revealed that the present transformation passes through a nucleophilic addition of dialkyl phosphates, rather than an insertion of P-H to carbenes.


Asunto(s)
Organofosfonatos , Fosfitos , Elementos de Transición , Bromuros , Fosfatos
4.
ACS Appl Mater Interfaces ; 6(18): 16403-8, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25148532

RESUMEN

Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices.

5.
Nanoscale ; 5(12): 5514-8, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23673389

RESUMEN

A construction strategy for ratiometric fluorescent nanosensors based on water soluble C-dots was developed, which could sense temperature (10-82 °C), pH values (lower than 6.0 or higher than 8.6) and Fe(3+) ions (>0.04 µM) by monitoring the intensity ratios of dual fluorescence bands (Ib/Ig) under 380 nm excitation. Ib/Ig decreased nearly linearly with increasing temperature from 10 to 82 °C. In the pH range from 8.6 to 6.0, the Ib/Ig was nearly constant at 0.75. Ib/Ig gradually decreased from 0.75 to 0.52 in the pH range from 6.0 to 1.9, and increased nearly linearly from 0.52 to 0.75 in the pH range from 1.9 to 1.0. The dual fluorescence behavior was reversible in the pH range from 1.0 to 8.6. As pH increased from 10.6 to 13.0, the green fluorescence band decreased continuously and blue shifted with a nearly linear increase in Ib/Ig from 0.75 to 2.15, while the green fluorescence band cannot be recovered by decreasing the pH value. Ib/Ig was ultrasensitive and selective in presence of Fe(3+) (>0.04 µM) in neutral aqueous environments. The two fluorescence bands of the C-dots were attributed to different surface states that may produce different fluorescent signal responses to external physical or chemical stimuli.

6.
Opt Express ; 15(7): 3948-54, 2007 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19532637

RESUMEN

Si nanocrystals (nc-Si) are addressed in the eutectic Al(2)O(3):SiO(2) thin films co-doped with Er(3+) and Yb(3+) by the laser-induced crystallization (LIC). The thin films are originally synthesized on a silica-on-silicon (SOS) substrate by the microwave electron cyclotron resonance (MW-ECR) plasma source enhanced RF sputtering. Raman spectroscopy has revealed that the strong crystallization occurs with the emergence of the nc-Si in the eutectic Al(2)O(3): SiO(2) layer during the liquid phase transformation. The dual wavelength energy transfer mechanism at 800nm and 980nm induced by 980nm excitation in nc-Si and Yb sensitized Er doped system has been proposed and demonstrated. A tenfold photoluminescence enhancement has been obtained from this mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...