Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 215: 108986, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39106769

RESUMEN

Arbuscular mycorrhizal fungi (AMF) and Chitooligosaccharide (COS) can increase the resistance of plants to disease. COS can also promote the symbiosis between AMF and plants. However, the effects of AMF & COS combined application on the rhizosphere soil microbial community of tobacco and the improvement of tobacco's resistance to black shank disease are poorly understood.·We treated tobacco with AMF, COS, and combined application of AMF & COS (AC), respectively. Then studied the incidence, physio-biochemical changes, root exudates, and soil microbial diversity of tobacco seedling that was inoculated with Phytophthora nicotianae. The antioxidant enzyme activity and root vigor of tobacco showed a regular of AC > AMF > COS > CK, while the severity of tobacco disease showed the opposite regular. AMF and COS enhance the resistance to black shank disease by enhancing root vigor, and antioxidant capacity, and inducing changes in the rhizosphere microecology of tobacco. We have identified key root exudates and critical soil microorganisms that can inhibit the growth of P. nicotianae. The presence of caprylic acid in root exudates and Bacillus (WdhR-2) in rhizosphere soil microorganisms is the key factor that inhibits P. nicotianae growth. AC can significantly increase the content of caprylic acid in tobacco root exudates compared to AMF and COS. Both AMF and COS can significantly increase the abundance of Bacillus in tobacco rhizosphere soil, but the abundance of Bacillus in AC is significantly higher than that in AMF and COS. This indicates that the combined application of AMF and COS is more effective than their individual use. These findings suggest that exogenous stimuli can induce changes in plant root exudates, regulate plant rhizosphere microbial community, and then inhibit the growth of pathogens, thereby improving plant resistance to diseases.

2.
Nat Commun ; 15(1): 3520, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664402

RESUMEN

The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (Glycine soja), we demonstrate that highly conserved microbes dominated by Pseudomonas are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding Pseudomonas isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the Pseudomonas isolates. Moreover, exogenous application for xanthine to non-stressed plants results in Pseudomonas enrichment, reproducing the microbiota shift in salt-stressed root. Finally, Pseudomonas mutant analysis shows that the motility related gene cheW is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial Pseudomonas species by exudating key metabolites (i.e., purine) against salt stress.


Asunto(s)
Glycine max , Raíces de Plantas , Pseudomonas , Rizosfera , Pseudomonas/genética , Pseudomonas/metabolismo , Glycine max/microbiología , Glycine max/metabolismo , Glycine max/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Microbiota/efectos de los fármacos , Purinas/metabolismo , Purinas/farmacología , Estrés Salino/genética , Quimiotaxis/genética , Tolerancia a la Sal/genética , Microbiología del Suelo , Xantina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
3.
J Cancer ; 15(9): 2678-2690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577608

RESUMEN

Background: Prostate adenocarcinoma (PRAD) is one of the most common cancers in male. Increasing evidences pointed out that Neutrophil Extracellular Traps (NETs) play an important role in tumor angiogenesis, tumor metastasis and drug resistance. However, limited systematic studies regarding the role of NETs in PRAD have been performed. Identification of biomarkers based on NETs might facilitate risk stratification which help optimizing the clinical strategies. Methods: NETs-related genes with differential expressions were identified between PRAD and adjacent normal tissues in TCGA-PRAD dataset. Consensus cluster analysis was performed to determine the PRAD subtypes based on the different-expressed NETs-related genes. The difference of pathway enrichment, infiltrating immune cell and genomic mutation were also evaluated between subtypes. LASSO cox regression analysis was conducted to construct a NETs-related prognostic signature. Result: We identified 19 NETs related genes with differential expressions between PRAD and adjacent normal tissue in TCGA-PRAD dataset. Two significant subtypes were identified based on these 19 genes by consensus cluster analysis, namely subtype 1 and subtype 2. Significant differences in prognosis, immune infiltration and tumor mutation burden were observed in subtypes. LASSO Cox regression analysis identified a NETs-associated prognostic signature including 13 genes, and this signature had a good performance in predicting the progression-free survival of PRAD patients. Further integrated analysis indicated that MMP9 mostly expressed in Mono/Macrophage cells might play a role in regulating NETs formation via neutrophil activation in PRAD. Conclusion: To sum up, the current study identified two NETs-related molecular subtypes and based on which constructed a prognostic signature for PRAD.

4.
Chemistry ; 30(34): e202400740, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38623910

RESUMEN

Diversified molecular information-processing methods have significant implications for nanoscale manipulation and control, monitoring and disease diagnosis of organisms, and direct intervention in biological activities. However, as an effective approach for implementing multifunctional molecular information processing, DNA reaction networks (DRNs) with numerous functionally specialized molecular structures have challenged them on scale design, leading to increased network complexity, further causing problems such as signal leakage, attenuation, and cross-talk in network reactions. Our study developed a strategy for performing various signal-processing tasks through engineering modular DRNs. This strategy is based on a universal core unit with signal selection capability, and a time-adjustable signal self-resetting module is achieved by combing the core unit and self-resetting unit, which improves the time controllability of modular DRNs. In addition, multi-input and -output signal cross-catalytic and continuously adjustable signal delay modules were realized by combining core and threshold units, providing a flexible, precise method for modular DRNs to process the signal. The strategy simplifies the design of DRNs, helps generate design ideas for large-scale integrated DRNs with multiple functions, and provides prospects in biocomputing, gene regulation, and biosensing.


Asunto(s)
ADN , ADN/química , Técnicas Biosensibles/métodos
5.
BMC Genomics ; 25(1): 266, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461245

RESUMEN

BACKGROUND: DNA storage has the advantages of large capacity, long-term stability, and low power consumption relative to other storage mediums, making it a promising new storage medium for multimedia information such as images. However, DNA storage has a low coding density and weak error correction ability. RESULTS: To achieve more efficient DNA storage image reconstruction, we propose DNA-QLC (QRes-VAE and Levenshtein code (LC)), which uses the quantized ResNet VAE (QRes-VAE) model and LC for image compression and DNA sequence error correction, thus improving both the coding density and error correction ability. Experimental results show that the DNA-QLC encoding method can not only obtain DNA sequences that meet the combinatorial constraints, but also have a net information density that is 2.4 times higher than DNA Fountain. Furthermore, at a higher error rate (2%), DNA-QLC achieved image reconstruction with an SSIM value of 0.917. CONCLUSIONS: The results indicate that the DNA-QLC encoding scheme guarantees the efficiency and reliability of the DNA storage system and improves the application potential of DNA storage for multimedia information such as images.


Asunto(s)
Algoritmos , Compresión de Datos , Reproducibilidad de los Resultados , ADN/genética , Compresión de Datos/métodos , Procesamiento de Imagen Asistido por Computador/métodos
6.
Cell Rep ; 43(4): 113699, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38517891

RESUMEN

Over the past decade, the rapid development of DNA synthesis and sequencing technologies has enabled preliminary use of DNA molecules for digital data storage, overcoming the capacity and persistence bottlenecks of silicon-based storage media. DNA storage has now been fully accomplished in the laboratory through existing biotechnology, which again demonstrates the viability of carbon-based storage media. However, the high cost and latency of data reconstruction pose challenges that hinder the practical implementation of DNA storage beyond the laboratory. In this article, we review existing advanced DNA storage methods, analyze the characteristics and performance of biotechnological approaches at various stages of data writing and reading, and discuss potential factors influencing DNA storage from the perspective of data reconstruction.


Asunto(s)
ADN , ADN/metabolismo , Almacenamiento y Recuperación de la Información/métodos , Humanos
7.
J Chem Inf Model ; 64(5): 1719-1729, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38385334

RESUMEN

Current DNA storage schemes lack flexibility and consistency in processing highly redundant and correlated image data, resulting in low sequence stability and image reconstruction rates. Therefore, according to the characteristics of image storage, this paper proposes storing images in DNA via base128 encoding (DNA-base128). In the data writing stage, data segmentation and probability statistics are carried out, and then, the data block frequency and constraint encoding set are associated with achieving encoding. When the image needs to be recovered, DNA-base128 completes internal error correction by threshold setting and drift comparison. Compared with representative work, the DNA-base128 encoding results show that the undesired motifs were reduced by 71.2-90.7% and that the local guanine-cytosine content variance was reduced by 3 times, indicating that DNA-base128 can store images more stably. In addition, the structural similarity index (SSIM) and multiscale structural similarity (MS-SSIM) of image reconstruction using DNA-base128 were improved by 19-102 and 6.6-20.3%, respectively. In summary, DNA-base128 provides image encoding with internal error correction and provides a potential solution for DNA image storage. The data and code are available at the GitHub repository: https://github.com/123456wk/DNA_base128.


Asunto(s)
ADN , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos
8.
Ecotoxicol Environ Saf ; 270: 115872, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171098

RESUMEN

Cadmium (Cd) contamination poses a substantial threat the environment, necessitating effective remediation strategies. Phytoremediation emerges as a cost-efficient and eco-friendly approach for reducing Cd levels in the soil. In this study, the suitability of A. venetum for ameliorating Cd-contaminated soils was evaluated. Mild Cd stress promoted seedling and root growth, with the root being identified as the primary tissue for Cd accumulation. The Cd content of roots ranged from 0.35 to 0.55 mg/g under treatment with 10-50 µM CdCl2·2.5 H2O, and the bioaccumulation factor ranged from 28.78 to 84.43. Transcriptome sequencing revealed 20,292 unigenes, and 7507 nonredundant differentially expressed genes (DEGs) were identified across five comparison groups. DEGs belonging to the "MAPK signaling pathway-plant," "monoterpenoid biosynthesis," and "flavonoid biosynthesis pathway" exhibited higher expression levels in roots compared to stems and leaves. In addition, cytokinin-related DEGs, ROS scavenger genes, such as P450, glutathione-S-transferase (GST), and superoxide dismutase (SOD), and the cell wall biosynthesis-related genes, CSLG and D-GRL, were also upregulated in the root tissue, suggesting that Cd promotes root development. Conversely, certain ABC transporter genes, (e.g, NRAMP5), and some vacuolar iron transporters, predominantly expressed in the roots, displayed a strong correlation with Cd content, revealing the mechanism underlying the compartmentalized storage of Cd in the roots. KEGG enrichment analysis of DEGs showed that the pathways associated with the biosynthesis of flavonoids, lignin, and some terpenoids were significantly enriched in the roots under Cd stress, underscoring the pivotal role of these pathways in Cd detoxification. Our study suggests A. venetum as a potential Cd-contaminated phytoremediation plant and provides insights into the molecular-level mechanisms of root development promotion and accumulation mechanism in response to Cd stress.


Asunto(s)
Apocynum , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/metabolismo , Apocynum/genética , Apocynum/metabolismo , Transcriptoma , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
9.
Microbiol Res ; 280: 127598, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176360

RESUMEN

Microbial co-culture has proven to be an effective way to improve the ability of microorganisms to biocontrol. However, the interactive mechanisms of co-cultural microbes, especially between fungi and bacteria, have rarely been studied. By comparative analysis of morphology, transcriptomics and metabolomics, the interactive mechanisms of a sequential co-culture system of Trichoderma asperellum HG1 and Bacillus subtilis Tpb55 was explored in this study. The results revealed that co- culture has no significant effect on the growth and cell morphology of the two strains, but lead to mycelium wrinkling of HG1. RNA-seq analysis showed that co-culture significantly upregulated the HG1 genes concerning amino acid degradation and metabolism, proteolysis, resisting environmental stress, cell homeostasis, glycolysis, the glyoxylate cycle, and the citric acid (TCA) cycle, while Tpb55 genes related to cell homeostasis, spore formation and membrane fluidization were significantly upregulated, but genes associating to TCA, glycolytic cycles and fatty acid ß-oxidation were significantly downregulated. Metabolomic results revealed that some amino acids related to energy metabolism were significantly altered in HG1, whereas palmitic acid, which is related to cell membrane functions, was upregulated in Tpb55. These results indicated that HG1 could interfere with carbon metabolism and cell membrane fluidity, but accelerate spore formation of Tpb55. Biophysical assays further convinced that co-culture could decrease ATP content and inhibit ATPase activity in HG1, and could promote spore formation and reduce the cell membrane fluidity of Tpb55. In addition, co-culture also accelerated the production of intracellular anti-oomycete compound octhilinone. The above results indicate that HG1 and Tpb55 are mainly in a competitive relationship in the co culture system. These findings provide new insights for understanding the interaction mechanism between co cultured microbes.


Asunto(s)
Bacillus subtilis , Hypocreales , Trichoderma , Técnicas de Cocultivo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Trichoderma/metabolismo
10.
J Environ Manage ; 349: 119488, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939476

RESUMEN

Rhizosphere microbiomes play an important role in enhancing plant salt tolerance and are also commonly employed as bio-inoculants in soil remediation processes. Cultivated soybean (Glycine max) is one of the major oilseed crops with moderate salt tolerance. However, the response of rhizosphere microbes me to salt stress in soybean, as well as their potential application in saline soil reclamation, has been rarely reported. In this study, we first investigated the microbial communities of salt-treated and non-salt-treated soybean by 16S rRNA gene amplicon sequencing. Then, the potential mechanism of rhizosphere microbes in enhancing the salt tolerance of soybean was explored based on physiological analyses and transcriptomic sequencing. Our results suggested that Ensifer and Novosphingobium were biomarkers in salt-stressed soybean. One corresponding strain, Ensifer sp. GMS14, showed remarkable growth promoting characteristics. Pot experiments showed that GMS14 significantly improved the growth performance of soybean in saline soils. Strain GMS14 alleviated sodium ions (Na+) toxicity by maintaining low a Na+/K+ ratio and promoted nitrogen (N) and phosphorus (P) uptake by soybean in nutrient-deficient saline soils. Transcriptome analyses indicated that GMS14 improved plant salt tolerance mainly by ameliorating salt stress-mediated oxidative stress. Interestingly, GMS14 was evidenced to specifically suppress hydrogen peroxide (H2O2) production to maintain reactive oxygen species (ROS) homeostasis in plants under salt stress. Field experiments with GMS14 applications showed its great potential in saline soil reclamation, as evidenced by the increased biomass and nodulation capacity of GMS14-inoculated soybean. Overall, our findings provided valuable insights into the mechanisms underlying plant-microbes interactions, and highlighted the importance of microorganisms recruited by salt-stressed plant in the saline soil reclamation.


Asunto(s)
Tolerancia a la Sal , Suelo , Tolerancia a la Sal/genética , Glycine max/genética , Peróxido de Hidrógeno , ARN Ribosómico 16S , Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA