Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 21: 101222, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38389577

RESUMEN

Asparagus, characterized by its high metabolic rate, is susceptible to quality degradation. Proanthocyanidins have antioxidant, antibacterial, antiviral, and other biological functions and can inhibit the production of reactive oxygen species in plants. To enhance the shelf life of asparagus, we investigated the impact of various concentrations of proanthocyanidins on its cold storage and preservation. The findings revealed that proanthocyanidins effectively mitigated water loss, delayed chlorophyll degradation, and prevented firmness decline. Furthermore, they enhanced the activity of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, and polyphenol oxidase), bolstered DPPH free radical scavenging ability, and increased the levels of total phenol, total flavone, rutin, oligomeric procyanidins, proline, and soluble protein. Moreover, proanthocyanidins promoted the accumulation of vitamin C, amino acids, total saponins, and lignin in the later storage stage, contributing to increased mechanical tissue thickness. These results suggest that proanthocyanidins play a crucial role in retarding the deterioration of asparagus quality during storage by affecting the antioxidant capacity and phytochemical (polyphenol,amino acid, total saponin, and lignin) synthesis in asparagus.

2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834070

RESUMEN

The genus Apium, belonging to the family Apiaceae, comprises roughly 20 species. Only two species, Apium graveolens and Apium leptophyllum, are available in China and are both rich in nutrients and have favorable medicinal properties. However, the lack of genomic data has severely constrained the study of genetics and evolution in Apium plants. In this study, Illumina NovaSeq 6000 and Nanopore sequencing platforms were employed to identify the mitochondrial genomes of A. graveolens and A. leptophyllum. The complete lengths of the mitochondrial genomes of A. graveolens and A. leptophyllum were 263,017 bp and 260,164 bp, respectively, and contained 39 and 36 protein-coding genes, five and six rRNA genes, and 19 and 20 tRNA genes. Consistent with most angiosperms, both A. graveolens and A. leptophyllum showed a preference for codons encoding leucine (Leu). In the mitochondrial genome of A. graveolens, 335 SSRs were detected, which is higher than the 196 SSRs found in the mitochondrial genome of A. leptophyllum. Studies have shown that the most common RNA editing type is C-to-U, but, in our study, both A. graveolens and A. leptophyllum exhibited the U-C editing type. Furthermore, the transfer of the mitochondrial genomes of A. graveolens and A. leptophyllum into the chloroplast genomes revealed homologous sequences, accounting for 8.14% and 4.89% of the mitochondrial genome, respectively. Lastly, in comparing the mitochondrial genomes of 29 species, it was found that A. graveolens, A. leptophyllum, and Daucus carota form a sister group with a support rate of 100%. Overall, this investigation furnishes extensive insights into the mitochondrial genomes of A. graveolens and A. leptophyllum, thereby enhancing comprehension of the traits and evolutionary patterns within the Apium genus. Additionally, it offers supplementary data for evolutionary and comparative genomic analyses of other species within the Apiaceae family.


Asunto(s)
Apiaceae , Apium , Daucus carota , Genoma del Cloroplasto , Genoma Mitocondrial , Magnoliopsida , Filogenia , Apium/genética , Genoma Mitocondrial/genética , Apiaceae/genética , Daucus carota/genética , Magnoliopsida/genética
3.
Food Res Int ; 170: 112995, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316021

RESUMEN

Glucoraphanin (GRA) is an aliphatic glucosinolate (GSL), and its hydrolysis product has powerful anticancer activity. ALKENYL HYDROXALKYL PRODUCING 2 (AOP2) gene, encodes a 2-oxoglutarate-dependent dioxygenase, which can catalyze GRA to form gluconapin (GNA). However, GRA only present in trace amounts in Chinese kale. To increase the content of GRA in Chinese kale, three copies of BoaAOP2 were isolated and edited using CRISPR/Cas9 system. The content of GRA was 11.71- to 41.29-fold (0.082-0.289 µmol g-1 FW) higher in T1 generation of boaaop2 mutants than in wild-type plants, and this was accompanied by an increase in the GRA/GNA ratio and reductions in the content of GNA and total aliphatic GSLs. BoaAOP2.1 is an effective gene for the alkenylation of aliphatic GSLs in Chinese kale. Overall, targeted editing of CRISPR/Cas9-mediated BoaAOP2s altered aliphatic GSL side-chain metabolic flux and enhanced the GRA content in Chinese kale, suggesting that metabolic engineering of BoaAOP2s has huge potential in improving nutritional quality of Chinese kale.


Asunto(s)
Brassica , Brassica/genética , Glucosinolatos , Sistemas CRISPR-Cas
4.
Front Plant Sci ; 14: 1118895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089633

RESUMEN

Research revealed that the abaxial leafy supplemental lighting (AB) can significantly improve the net photosynthetic rate and stomatal conductance in the leaves of tomato plants compare to the adaxial leafy supplemental lighting (AD) method. However, the underlying regulatory mechanisms are still poorly understood. Here, we conducted AB and AD on tomato and assessed transcriptomic, and proteomic changes in leaves. The result showed that under the two supplemental lighting methods, a total of 7352 genes and 152 proteins were differentially expressed. Significant differences were observed in genes expression levels and proteins abundances across multiple pathways, mainly including cell process, metabolism process, biological regulation, environment information processing, genetic information processing, metabolism, and organismal systems. Additionally, we also found that some key genes that plant hormone signaling, light perception, photosynthesis, plant fitness, and promoting fruit ripening, have increased significantly, which can explain the effect of AB on plant growth and development. Finally, through the qPCR, we determined that AB mainly up-regulate a series of auxin-responsive genes or factors, auxin polarity transport genes, gibberellin synthesis genes, cell cycle regulator genes, sugar transporters, and fleshy fruit ripening genes. These results help us to understand plant light response mechanism and discover genes which contribute to efficient light energy utilization.

5.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675053

RESUMEN

Asparagus belongs to the Liliaceae family and has important economic and pharmacological value. Lignin plays a crucial role in cell wall structural integrity, stem strength, water transport, mechanical support and plant resistance to pathogens. In this study, various biological methods were used to study the mechanism of shading on the asparagus lignin accumulation pathway. The physiological results showed that shading significantly reduced stem diameter and cell wall lignin content. Microstructure observation showed that shading reduced the number of vascular bundles and xylem area, resulting in decreased lignin content, and thus reducing the lignification of asparagus. Cinnamic acid, caffeic acid, ferulic acid and sinapyl alcohol are crucial intermediate metabolites in the process of lignin synthesis. Metabolomic profiling showed that shading significantly reduced the contents of cinnamic acid, caffeic acid, ferulic acid and sinapyl alcohol. Transcriptome profiling identified 37 differentially expressed genes related to lignin, including PAL, C4H, 4CL, CAD, CCR, POD, CCoAOMT, and F5H related enzyme activity regulation genes. The expression levels of POD, CCoAOMT, and CCR genes were significantly decreased under shading treatment, while the expression levels of CAD and F5H genes exhibited no significant difference with increased shading. The downregulation of POD, CCoAOMT genes and the decrease in CCR gene expression levels inhibited the activities of the corresponding enzymes under shading treatment, resulting in decreased downstream content of caffeic acid, ferulic acid, sinaperol, chlorogenic acid and coniferin. A significant decrease in upstream cinnamic acid content was observed with shading, which also led to decreased downstream metabolites and reduced asparagus lignin content. In this study, transcriptomic and metabolomic analysis revealed the key regulatory genes and metabolites of asparagus lignin under shading treatment. This study provides a reference for further understanding the mechanism of lignin biosynthesis and the interaction of related genes.


Asunto(s)
Adaptación Fisiológica , Asparagus , Lignina , Luz Solar , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lignina/biosíntesis , Lignina/genética , Lignina/metabolismo , Transcriptoma , Asparagus/genética , Asparagus/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología
6.
Food Chem ; 405(Pt B): 134965, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36435115

RESUMEN

The flavor of Guizhou suancai fermented by the emerging varieties Zhuchang-2 (ZC-2) and Zhuchang Red (ZC Red) is superior to that of ZC-1, a typical local variety of leaf mustard in Guizhou Province, China. Here, changes in phytochemical qualities during the fermentation of three Guizhou suancai were characterized to identify the causes underlying differences in flavor. The content of pigments, antioxidants, gluconapin, gluconasturtiin, and total isothiocyanates, and antioxidant capacity were highest in fresh ZC Red. The content of sinigrin, indolic glucosinolates, and total glucosinolate breakdown products was highest in fresh ZC-2. The content of phytochemicals, with the exception of carotenoids, was significantly decreased after fermentation. Odor was correlated with gluconapin, while taste was correlated with sinigrin. These findings provide detailed insights into the sensory and phytochemical properties of three Guizhou suancai that could facilitate the selection of raw material varieties.


Asunto(s)
Antioxidantes , Glucosinolatos , Fermentación
7.
Front Plant Sci ; 13: 1059175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507378

RESUMEN

Introduction: Cadmium (Cd) contamination is a severe problem in paddy soils that has affected crops' safety. The present study aimed at remediating Cd-contaminated paddy soil by improving the phytoremediation capability of aquatic accumulator plants. Methods: We conducted an experiment to investigate the effects of salicylic acid (SA) on the growth and Cd phytoremediation capability of the aquatic accumulator plant Nasturtium officinale. Results: SA with the concentrations of 100, 150, and 200 mg/L increased the root and shoot biomass of N. officinale, while only 150 mg/L increased the chlorophyll a and b contents. SA increased the activities of peroxidase and catalase of N. officinale to a great extent, but decreased the superoxide dismutase activity and soluble protein content. SA also increased the root Cd content, shoot Cd content, root Cd extraction, and shoot Cd extraction to a large extent. At concentrations of 100, 150, and 200 mg/L, SA increased the shoot Cd extraction by 17.59%, 47.16%, and 43.27%, respectively, compared with the control. Moreover, SA concentration had a quadratic polynomial regression relationship with the root Cd extraction and shoot Cd extraction. The correlation and grey relational analyses revealed that root Cd extraction, shoot biomass, and root biomass were closely associated with shoot Cd extraction of N. officinale. Conclusion: Thus, our results suggest that SA promoted the growth and improved the phytoremediation (extraction) capability of N. officinale, and 150 mg/L SA was the most suitable concentration.

8.
Front Plant Sci ; 13: 1043378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388524

RESUMEN

Wasabi (Eutrema japonicum), also known as Japanese horseradish, is a perennial herb widely used in Japanese cuisine for its special flavour. The health-promoting phytochemicals and antioxidant capacity of four organs (leaf, petiole, rhizome, and root) of two cultivars (Chuankui-1 and Chuankui-2) of wasabi from two producing areas, Leibo and Guangyuan in Sichuan Province, China, were investigated in this study. The results showed that leaves were rich in pigments, soluble protein, ascorbic acid, and total phenolics and had the highest antioxidant capacity. Soluble sugars were highest in the petioles and were 1.1- to 5-fold higher than those in the other three organs. Glucosinolates and glucosinolate breakdown products (GBPs) were the most abundant in rhizomes, and their maximum values were 271.61 mmol kg-1 DW and 249.78 mmol kg-1 DW, respectively. The rhizomes of Chuankui-1 in Leibo and the leaves of Chuankui-1 in Guangyuan were superior in terms of glucosinolates and GBPs. These findings provide new insights that will aid the use of wasabi cultivars; they also have implications for the environmental characteristics needed to obtain better quality wasabi products. In the future, metabolome and transcriptome can be used to analyze the potential mechanism of differences among typical varieties, origins and parts.

9.
Plants (Basel) ; 11(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36235381

RESUMEN

Mustard is an edible vegetable in the genus Brassica with tender and clean sprouts and short growth cycles that has become a rich source of nutrients required by humans. Here, the effects of dark exposure duration and planting density on the health-promoting phytochemicals and the antioxidant capacity of mustard sprouts were evaluated. The content of soluble sugar, soluble protein, chlorophyll, and carotenoids and the antioxidant capacity of mustard were higher in the two-day dark treatment; the content of indolic glucosinolates was also more affected in the dark day experiment than in the planting density experiment. The soluble sugar, soluble protein, and aliphatic and total glucosinolate levels were higher when sprouts were grown at high densities (6-7 g per tray); however, no significant variation was observed in the content of chlorophyll and carotenoids and the antioxidant capacity. The results of this study show that the optimum cultivation regime for maximizing the concentrations of nutrients of mustard plants is a planting density of 6 g of seeds per tray and a two-day dark treatment.

10.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36139774

RESUMEN

Drought stress is a key factor limiting the growth and tuber yield of potatoes (Solanum tuberosum L.). Brassinosteroids (BRs) have been shown to alleviate drought stress in several plant species; however, little is known about the physiological and molecular mechanisms by which BRs enhance drought resistance in potatoes. Here, we characterized changes in the physiology and transcriptome of the tetraploid potato variety 'Xuanshu-2' in response to drought stress after 24-epibrassinolide (EBR) pretreatment. The abscisic acid (ABA) content, photosynthetic capacity, and the activities of antioxidant enzymes were increased; the intercellular CO2 concentration, relative conductivity, reactive oxygen species, malondialdehyde, proline, and soluble sugar content were decreased after EBR pretreatment compared with plants under drought stress. Transcriptome analysis revealed 1330 differently expressed genes (DEGs) involved in the response to drought stress after EBR pretreatment. DEGs were enriched in plant hormone signal transduction, starch and sucrose metabolism, circadian rhythm, flavonoid biosynthesis, and carotenoid biosynthesis. DEGs associated with the BR signaling and biosynthesis pathways, as well as ABA metabolic pathways were identified. Our findings provide new insights into the mechanisms by which BRs enhance the drought resistance of potatoes.

11.
Plants (Basel) ; 11(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807615

RESUMEN

Purple flowering stalks and green flowering stalks of Brassica campestris are widely cultivated in the middle and upper reaches of the Yangtze River. Here, concentrations of the main health-promoting compounds and antioxidant capacity levels were characterized in different parts (leaves, peel, flesh, and inflorescences) of purple and green flowering stalks. There were significant differences in the concentrations of health-promoting compounds between the two variants; the concentrations of pigments, especially anthocyanidins, and gluconapin, were significantly higher in purple flowering stalks than in green flowering stalks, and the progoitrin content was significantly higher in green flowering stalks than in purple flowering stalks. The leaves were judged to be the most nutritional edible part because they had the highest concentrations of pigments, ascorbic acid, proanthocyanidins, flavonoids, and total phenolics. Antioxidant capacity was also highest in the leaves, and it was positively correlated with the concentration of health-promoting compounds. Purple flowering stalks and green flowering stalks were found to be rich in health-promoting compounds, especially glucosinolates. Overall, our findings indicate that consumption of the leaves and peel would provide the most health benefits. Some suggestions are provided regarding the processing and utilization of these edible components.

12.
Front Plant Sci ; 13: 880271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665158

RESUMEN

Effect of packaging baby mustard into bags of different color under light exposure on its visual quality and the content of chlorophyll, carotenoids, and glucosinolates at 20°C was investigated. Packaging with seven color bags under light exposure prolonged the shelf life, especially green (GB), blue (BB), and transparent (TB) bags with holes, and their shelf life was 1.7, 1.6, and 1.6 times that of the control, respectively. The GB and BB treatments delayed the deterioration of the sensory quality in baby mustard during storage. The BB and TB treatments not only increased chlorophyll and carotenoids content in baby mustard during storage but also enhanced the accumulation of glucosinolates by inhibiting their degradation, especially the BB treatment. Overall, the results demonstrate that the BB treatment is a promising technique for maintaining the postharvest quality of baby mustard.

13.
Front Plant Sci ; 13: 1101199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589074

RESUMEN

As a stem variety of lettuce, the fleshy stem is the main product organ of stem lettuce. The molecular mechanism of fleshy stem expansion in stem lettuce is a complex biological process. In the study, the material accumulation, gene expression, and morphogenesis during fleshy stem expansion process were analyzed by the comparative analysis of metabolome, transcriptome and the anatomical studies. The anatomical studies showed that the occurrence and activity of vascular cambium mainly led to the development of fleshy stems; and the volume of pith cells gradually increased and arranged tightly during the expansion process. A total of 822 differential metabolites and 9,383 differentially expressed genes (DEGs) were identified by the metabolomics and transcriptomics analyses, respectively. These changes significantly enriched in sugar synthesis, glycolysis, and plant hormone anabolism. The expression profiles of genes in the sugar metabolic pathway gradually increased in fleshy stem expansion process. But the sucrose content was the highest in the early stage of fleshy stem expansion, other sugars such as fructose and glucose content increased during fleshy stem expansion process. Plant hormones, including IAA, GA, CTK, and JA, depicted important roles at different stem expansion stages. A total of 1,805 DEGs were identified as transcription factors, such as MYB, bHLH, and bZIP, indicating that these transcription factor families might regulate the fleshy stems expansion in lettuce. In addition, the expression patterns identified by qRT-PCR were consistent with the expression abundance identified by the transcriptome data. The important genes and metabolites identified in the lettuce fleshy stem expansion process will provide important information for the further molecular mechanism study of lettuce fleshy stem growth and development.

14.
Genes (Basel) ; 12(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34828340

RESUMEN

Excessive aluminum ions (Al3+) in acidic soil can have a toxic effect on watermelons, restricting plant growth and reducing yield and quality. In this study, we found that exogenous application of nitric oxide (NO) could increase the photochemical efficiency of watermelon leaves under aluminum stress by promoting closure of leaf stomata, reducing malondialdehyde and superoxide anion in leaves, and increasing POD and CAT activity. These findings showed that the exogenous application of NO improved the ability of watermelon to withstand aluminum stress. To further reveal the mitigation mechanism of NO on watermelons under aluminum stress, the differences following different types of treatments-normal growth, Al, and Al + NO-were shown using de novo sequencing of transcriptomes. In total, 511 differentially expressed genes (DEGs) were identified between the Al + NO and Al treatment groups. Significantly enriched biological processes included nitrogen metabolism, phenylpropane metabolism, and photosynthesis. We selected 23 genes related to antioxidant enzymes and phenylpropane metabolism for qRT-PCR validation. The results showed that after exogenous application of NO, the expression of genes encoding POD and CAT increased, consistent with the results of the physiological indicators. The expression patterns of genes involved in phenylpropanoid metabolism were consistent with the transcriptome expression abundance. These results indicate that aluminum stress was involved in the inhibition of the photosynthetic pathway, and NO could activate the antioxidant enzyme defense system and phenylpropane metabolism to protect cells and scavenge reactive oxygen species. This study improves our current understanding by comprehensively analyzing the molecular mechanisms underlying NO-induced aluminum stress alleviation in watermelons.


Asunto(s)
Aluminio/metabolismo , Aluminio/toxicidad , Citrullus/efectos de los fármacos , Citrullus/fisiología , Óxido Nítrico/farmacología , Estrés Fisiológico/efectos de los fármacos , Transcriptoma , Fenómenos Biológicos/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Propanoles/metabolismo , Suelo/química
15.
Front Plant Sci ; 12: 817861, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154215

RESUMEN

The effect of melatonin treatment on the visual quality and content of health-promoting compounds in baby mustard (Brassica juncea var. gemmifera) at 20°C was investigated in this study. Application of 100 µmol L-1 melatonin was the most effective in prolonging the shelf life of baby mustard among all of the concentrations tested (1, 50, 100, and 200 µmol L-1). The 100 µmol L-1 melatonin treatment also delayed the increase in weight loss and the decrease in sensory parameter scores; retarded the decline of chlorophyll content; slowed the decline in antioxidant capacity by maintaining the content of carotenoids and ascorbic acid, as well as increasing the levels of total phenolics; and increased the content of individual and total glucosinolates in the lateral buds of baby mustard. These findings indicate that melatonin treatment is effective for maintaining the sensory and nutritional qualities of postharvest baby mustard.

16.
Environ Sci Pollut Res Int ; 25(30): 30671-30679, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30178407

RESUMEN

The effects of application of straw derived from cadmium (Cd) accumulator plants (Siegesbeckia orientalis, Conyza canadensis, Eclipta prostrata, and Solanum photeinocarpum) on growth and Cd accumulation of lettuce plants grown under Cd exposure were studied. Treatment with straw of the four Cd-accumulator species promoted growth, photosynthesis, and soluble protein contents and enhanced the activities of peroxidase in leaves of lettuce seedlings. The biomass of shoot of lettuce from high to low in turn is the treatment of C. canadensis straw > S. photeinocarpum straw > S. orientalis > E. prostrata > Control. The Cd content in edible parts (shoots) of the lettuce plants was significantly decreased in the presence of straw from the Cd-accumulator species, except the presence of the straw of E. prostrata. And, the greatest reduction in Cd content in shoots was 27.09% in the S. photeinocarpum straw treatment compared with that of the control. Therefore, application of straw of S. orientalis, C. canadensis, and S. photeinocarpum can promote the growth of lettuce seedlings, and decrease their Cd accumulation, when grown in Cd-contaminated soil, which is beneficial for production of lettuce safe for human consumption.


Asunto(s)
Cadmio/metabolismo , Lactuca/metabolismo , Fotosíntesis , Tallos de la Planta/química , Asteraceae/química , Asteraceae/metabolismo , Biomasa , Cadmio/análisis , Producción de Cultivos , Lactuca/química , Lactuca/enzimología , Lactuca/crecimiento & desarrollo , Peroxidasa/metabolismo , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Plantones/química , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Solanum/química , Solanum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...