Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2402412, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958533

RESUMEN

Meiosis is a specialized cell division process that generates gametes for sexual reproduction. However, the factors and underlying mechanisms involving meiotic progression remain largely unknown, especially in humans. Here, it is first showed that HSF5 is associated with human spermatogenesis. Patients with a pathogenic variant of HSF5 are completely infertile. Testicular histologic findings in the patients reveal rare postmeiotic germ cells resulting from meiotic prophase I arrest. Hsf5 knockout (KO) mice confirms that the loss of HSF5 causes defects in meiotic recombination, crossover formation, sex chromosome synapsis, and sex chromosome inactivation (MSCI), which may contribute to spermatocyte arrest at the late pachytene stage. Importantly, spermatogenic arrest can be rescued by compensatory HSF5 adeno-associated virus injection into KO mouse testes. Mechanistically, integrated analysis of RNA sequencing and chromatin immunoprecipitation sequencing data revealed that HSF5 predominantly binds to promoters of key genes involved in crossover formation (e.g., HFM1, MSH5 and MLH3), synapsis (e.g., SYCP1, SYCP2 and SYCE3), recombination (TEX15), and MSCI (MDC1) and further regulates their transcription during meiotic progression. Taken together, the study demonstrates that HSF5 modulates the transcriptome to ensure meiotic progression in humans and mice. These findings will aid in genetic diagnosis of and potential treatments for male infertility.

3.
Signal Transduct Target Ther ; 9(1): 47, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409199

RESUMEN

Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Genoma Humano/genética , ADN
5.
J Cardiovasc Dev Dis ; 10(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37103023

RESUMEN

The rapid improvement of descriptive genomic technologies has fueled a dramatic increase in hypothesized connections between cardiovascular gene expression and phenotypes. However, in vivo testing of these hypotheses has predominantly been relegated to slow, expensive, and linear generation of genetically modified mice. In the study of genomic cis-regulatory elements, generation of mice featuring transgenic reporters or cis-regulatory element knockout remains the standard approach. While the data obtained is of high quality, the approach is insufficient to keep pace with candidate identification and therefore results in biases introduced during the selection of candidates for validation. However, recent advances across a range of disciplines are converging to enable functional genomic assays that can be conducted in a high-throughput manner. Here, we review one such method, massively parallel reporter assays (MPRAs), in which the activities of thousands of candidate genomic regulatory elements are simultaneously assessed via the next-generation sequencing of a barcoded reporter transcript. We discuss best practices for MPRA design and use, with a focus on practical considerations, and review how this emerging technology has been successfully deployed in vivo. Finally, we discuss how MPRAs are likely to evolve and be used in future cardiovascular research.

6.
Clin Immunol ; 245: 109178, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368642

RESUMEN

Immune checkpoint (IC) therapy has led to a breakthrough in cancer treatment. However, the interaction of ICs is controversial in glioma. We detected features of ICs using transcriptome data and a multicolor immunofluorescence assay. We discovered that B7-H3 increased with grade and age and predicted worse overall survival (OS) at the transcriptional and proteomic levels. VISTA and PD-L1 were associated with OS and grade at the RNA level. At the protein level, VISTA was primarily expressed in tumor cells and TAMs. B7-H3 and VISTA were positively correlated with PD-L1. There was a strong correlation between PD-L1 and CD3 and between VISTA and IBA-1. PD-L1 was coexpressed with T cells. VISTA was coexpressed with TAMs. In T cells, we found a strong correlation in ICs, which worsened in TAMs and tumor cells. In conclusion, B7-H3 is a vital prognostic target for immunotherapy. We provided a potential mechanism for the immunosuppressive microenvironment in glioma.


Asunto(s)
Antígeno B7-H1 , Glioma , Humanos , Antígenos B7/genética , Antígenos B7/metabolismo , Proteómica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Glioma/genética , Microambiente Tumoral
9.
Nat Commun ; 12(1): 4442, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290256

RESUMEN

The forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


Asunto(s)
Epigénesis Genética , Miocitos Cardíacos/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Recién Nacidos , Sistemas CRISPR-Cas , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Ratones , Mutagénesis , Miocitos Cardíacos/metabolismo , Fenotipo , Reproducibilidad de los Resultados , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(1): 61-65, 2019 Jan.
Artículo en Chino | MEDLINE | ID: mdl-31037906

RESUMEN

OBJECTIVE: To analyze the correlation of K-ras gene mutations with the protein expressions of transforming growth factor-ß activating kinase 1 (TAK1) protein and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2) protein in colorectal cancer. METHODS: K-ras gene mutations were detected by DNA sequencing analysis, and the expressions of TAK1 protein and MAP4K2 protein were detected by immunohistochemical method in 76 cases of colorectal cancer tissues. RESULTS: In 76 cases of colorectal cancer tissues, the mutation rate of K-ras gene was 32.89% (25 cases), and K-ras gene mutations were correlated with the degrees of cell differentiation ( P<0.05). The positive rates of TAK1 protein and MAP4K2 protein were 48.68% and 46.05%, respectively. The protein expressions of TAK1 and MAP4K2 were positively correlated with the degrees of cell differentiation and lymph node metastases, respectively ( P<0.05). There was no correlation between K-ras gene mutation and either TAK1 protein or MAP4K2 protein expression ( P>0.05). In 25 cases of colorectal cancer with K-ras mutation, the expression of TAK1 protein was positively correlated with the expression of MAP4K2 protein ( P<0.05). CONCLUSION: K-ras gene mutation, TAK1 and MAP4K2 protein expressions were related to the degree of differentiation of colorectal cancer, but not to the depth of invasion. In colorectal cancer with K-ras gene mutation, the expression of TAK1 protein was positively correlated with the expression of MAP4K2 protein.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras)/genética , Genes ras , Quinasas del Centro Germinal , Humanos , Metástasis Linfática , Quinasas Quinasa Quinasa PAM , Mutación , Proteínas Serina-Treonina Quinasas
11.
Cell Biol Int ; 43(2): 117-124, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30203888

RESUMEN

Colorectal cancer (CRC) is the third most common type of cancer, and its incidence and mortality are markedly increasing worldwide. Oncogenic mutations of KRAS occur in up to 40% of CRC cases and pose a great challenge in the treatment of the disease. Quercetin is a dietary flavonoid that exerts anti-oxidant, anti-inflammatory, and anti-cancer properties. The current study investigated the anti-proliferative effect of quercetin on CRC cells harboring mutant or wild-type KRAS. The effect of quercetin on cell viability was investigated by MTT and colony formation assays, and apoptosis was detected using flow cytometry by labeling cells with Annexin V-FITC. The expression of the relevant proteins was examined by Western blotting. The data revealed that KRAS-mutant cells were more sensitive to quercetin-induced apoptosis than wild-type cells. Caspase activation was involved in quercetin-induced apoptosis. In addition, quercetin selectively activated the c-Jun N-terminal kinase (JNK) pathway in KRAS-mutant cells, while inhibition of phospho-JNK by SP600125 blocked quercetin-induced apoptosis. The results of the present study suggest that treatment with quercetin, a common flavonoid in plants, is potentially a useful strategy for the treatment of CRCs carrying KRAS mutations.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Quercetina/farmacología , Antracenos/farmacología , Caspasas/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Mutación , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
Apoptosis ; 24(1-2): 83-94, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30515612

RESUMEN

KRAS mutations are one of the most prevalent genetic alterations in colorectal cancer (CRC). Although directly targeting KRAS still is a challenge in anti-cancer therapies, alternatively inhibiting KRAS related signaling pathways has been approached effectively. Here we firstly reported that MAP kinase, transforming growth factor-ß-activated kinase 1 (TAK1), commonly expressed in CRC cell lines and significantly associated with KRAS mutation status. Inhibition of TAK1 by the small molecular inhibitor NG25 could inhibit CRC cells proliferation in vitro and in vivo, especially in KRAS-mutant cells. NG25 induced caspase-dependent apoptosis in KRAS-mutant cells and in orthotopic CRC mouse models by regulating the B-cell lymphoma-2 (Bcl-2) family and the inhibitor of apoptosis protein (IAP) family. Besides inhibiting molecules downstream of MAPK, including ERK, JNK and p38 phosphorylation, NG25 could block NF-κB activation in KRAS-mutant cells. As a target gene of NF-κB, down-regulated XIAP expression may be not only involved in apoptosis induced by NG25, but also reducing the formation of TAK1-XIAP complex that can activate TAK1 downstream signaling pathways, which forms a positive feedback loop to further induce apoptosis in KRAS-mutant CRC cells. Together, these findings indicated that TAK1 is an important kinase for survival of CRCs harboring KRAS mutations, and that NG25 may be a potential therapeutic strategy for KRAS-mutant CRC.


Asunto(s)
Adenocarcinoma/patología , Antineoplásicos/farmacología , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Piperazinas/farmacología , Piridinas/farmacología , Pirroles/farmacología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Animales , Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Mutación , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/uso terapéutico , Pirroles/uso terapéutico
13.
Int J Biol Markers ; : 1724600818785069, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016900

RESUMEN

BACKGROUND: Previous studies have reported that polymorphisms in the interleukin-1 gene may be involved in tumorigenesis and tumor progression. AIM: The purpose of the present study was to evaluate whether an insertion/deletion polymorphism, rs3783553, located in the miR-122 target gene interleukin-1α, was associated with the risk of colorectal cancer. METHODS: Genomic DNA was extracted from peripheral venous blood of 382 patients with colorectal cancer and 433 controls, and the polymorphism was genotyped using a polymerase chain reaction assay. RESULTS: Significantly decreased colorectal cancer risk was observed to be associated with the interleukin-1α rs3783553 insertion/insertion genotype ( P=0.0001; OR=0.41; 95% CI 0.26, 0.65) and the insertion allele ( P<0.001; OR=0.68; 95% CI 0.55, 0.83). Stratification analysis based on clinical and pathological features also revealed that the "TTCA" insertion allele of rs3783553 contributes to slow the progression of colorectal cancer. CONCLUSION: These results suggest that the rs3783553 polymorphism could be a useful genetic marker to predict the size/extent of colorectal cancer.

14.
Cancer Lett ; 383(2): 145-153, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27721019

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is well known for its ability to preferentially induce apoptosis in malignant cells without causing damage to most normal cells. However, inherent and acquired resistance of tumor to TRAIL-induced apoptosis limits its therapeutic applicability. Here we show that the orally available tyrosine kinase inhibitor, BAY61-3606, enhances the sensitivity of human colon cancer cells, especially those harboring active mutations in Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene, to TRAIL-induced apoptosis in vitro and in vivo. The sensitization was achieved by up-regulating death receptor 4 (DR4) and the tumor suppressor p53. BAY61-3606-induced the up-regulation of DR4 is p53-dependent. Knockout of p53 decreased BAY61-3606-induced DR4 expression and inhibited the effect of BAY61-3606 on TRAIL-induced apoptosis. In addition, BAY61-3606 suppressed activity of NF-κB and regulated its gene products, which might also contribute to TRAIL-induced apoptosis. In conclusion, our results showed that BAY61-3606 sensitizes colon cancer cells to TRAIL-induced apoptosis via up-regulating DR4 expression in p53-dependent manner and inhibiting NF-κB activity, suggesting that the combination of TRAIL and BAY61-3606 may be a promising therapeutic approach in the treatment of colon cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , FN-kappa B/metabolismo , Niacinamida/análogos & derivados , Pirimidinas/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Sinergismo Farmacológico , Células HCT116 , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Niacinamida/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...