Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Ecotoxicol Environ Saf ; 284: 116968, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236655

RESUMEN

Fine particulate matter (PM2.5) exposure has been extensively linked to reproductive and developmental dysfunctions, yet the underlying mechanisms remain elusive. This study employed single-cell RNA sequencing (scRNA-seq) to investigate PM2.5-induced changes in uterine cell populations and gene expression profiles in mice during estrus and early pregnancy. Methodologically, we intranasally inoculated mice with 20 µL of 4.0 mg/mL PM2.5 suspension during their estrus and early pregnancy periods. Utilizing scRNA-seq analysis, we revealed significant alterations in cell type composition following PM2.5 exposure. Notably, we observed a marked decrease in the proportion of natural killer (NK) cells in PM2.5-exposed mice (2.00 % vs. 8.97 % in controls). Further functional enrichment analysis identified suppression of the IL-17 signaling pathway in NK cells as a key mechanism of PM2.5-induced toxicity. GSEA analysis showed in-depth details of the downregulated genes in this pathway, including Fosb, S100a8, Tnfaip3, IL-17a, and S100a9. PM2.5 exposure also disrupted intercellular communication within the uterine microenvironment, with the number of cell interactions decreasing from 483 to 315 and interaction strength reducing from 12.43 to 6.78 compared to controls. Histological examination revealed that PM2.5 exposure led to thinning of the endometrium and less prominent main branches in uterine tissues, and immunofluorescence assays corroborated the altered expression of IL-17 pathway components, showing enhanced Hsp90ab1 expression and reduced FOSB, S100A8, and S100A9 expression in PM2.5-exposed uterine tissues. These findings provide novel insights into the cellular mechanisms of PM2.5-induced reproductive toxicity, highlighting the IL-17 signaling pathway in uterine NK cells as a potential target for therapeutic interventions. Our results underscore the need for air quality regulations and open new avenues for developing biomarkers and targeted therapies to mitigate the reproductive risks associated with PM2.5 exposure.

3.
Eur J Radiol ; 178: 111591, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39013271

RESUMEN

PURPOSE: To develop a radiomic nomogram based on multiparametric magnetic resonance imaging for the preoperative prediction of lymph node metastasis (LNM) in rectal cancer. METHODS: This retrospective study included 318 patients with pathologically proven rectal adenocarcinoma from two hospitals. Radiomic features were extracted from T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging scans of the training cohort, and the radsore model was then constructed. The combined model was obtained by integrating the Radscore and clinical models. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic effectiveness of each model, and the best-performing model was used to develop the nomogram. RESULTS: The Radscore and clinical models exhibited similar diagnostic efficacy (DeLong's test, P > 0.05). The AUC of the combined model was significantly higher than those of the clinical and Radscore models in the training cohort (AUC: 0.837 vs. 0.763 and 0.787, P: 0.02120 and 0.02309) and the external validation cohort (AUC: 0.880 vs. 0.797 and 0.779, P: 0.02310 and 0.02471). However, the diagnostic performance of the three models was comparable in the internal validation cohort (P > 0.05). Thus, among the three models, the combined model exhibited the highest diagnostic efficiency. The calibration curve exhibited satisfactory consistency between the nomogram predictions and the actual results. DCA confirmed the considerable clinical usefulness of the nomogram. CONCLUSION: The radiomics nomogram can accurately and noninvasively predict LNM in rectal cancer before surgery, serving as a convenient visualization tool for informing treatment decisions, including the choice of surgical approach and the need for neoadjuvant therapy.


Asunto(s)
Adenocarcinoma , Metástasis Linfática , Nomogramas , Radiómica , Neoplasias del Recto , Humanos , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Metástasis Linfática/diagnóstico por imagen , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Valor Predictivo de las Pruebas , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/patología , Neoplasias del Recto/cirugía , Estudios Retrospectivos
4.
J Hazard Mater ; 477: 135271, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39038382

RESUMEN

The prevalence of microplastics in human tissues and their potential reproductive toxicity have been increasingly documented, yet their appearance in the placenta and the impact of microplastic exposure on human fertility and pregnancy remains uncertain. Utilizing an inVia™ confocal Raman microspectroscopy by Renishaw equipped with a detection threshold as low as 0.25 µm, our study examined the microplastics in the placentas of 50 women post-delivery and investigated their correlations with gestational age, and neonatal length and weight. We found that 40 microplastic particles were identified across 31 of 50 placentas, averaging 2.35 ± 1.25 µm in size and ranging from 1.03 to 6.84 µm. Seven distinct polymer types were detected, with PTFE, PS, and ABS being the most prevalent. Notably, no significant difference across the normal, PTFE, and PS groups for all demographic variables examined was identified, nor as pathological alterations of placental tissues. In conclusion, our findings demonstrate the presence of seven microplastic polymers in human placentas, with PTFE, PS, and ABS being the most prevalent. However, maternal and neonatal parameters were not affected, and further studies are necessary to elucidate the effects of microplastics on developmental outcomes and fetal health.


Asunto(s)
Microplásticos , Placenta , Espectrometría Raman , Humanos , Femenino , Embarazo , Placenta/efectos de los fármacos , Placenta/química , Microplásticos/toxicidad , Microplásticos/análisis , Adulto , Exposición Materna/efectos adversos , Adulto Joven , Recién Nacido
5.
Sci Total Environ ; 937: 173522, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38802004

RESUMEN

Microplastics are ubiquitous environmental contaminants that have been detected in human semen from polluted areas, yet their prevalence and effects in the general population remain largely unexplored. To examine microplastic presence, abundance, polymer types, and associations with semen quality parameters in individuals without occupational exposures, this study was conducted by collecting semen samples from 40 participants undergoing premarital health assessments in Jinan, China. Raman microspectroscopy was employed to identify, quantify, and categorize microplastic polymers, sperm motility was assessed via computer-assisted analysis, and morphology was evaluated through Diff-Quik staining. Correlations between demographics, semen parameters, and microplastic content were examined by statistical analysis. We found that microplastics were detected in all semen samples, with 2 particles per sample (ranging from 0.72 to 7.02 µm). Eight distinct polymers were identified, with polystyrene (31 %) being most prevalent. Semen exposed to polystyrene demonstrated higher sperm progressive motility as compared to polyvinyl chloride exposure group (43.52 ± 14.21 % vs 19.04 ± 13.46 %). Sperm morphological abnormalities were observed but not significantly associated with specific plastic types. In conclusion, this study reveals microplastic contamination in semen from individuals without occupational exposure, with PS, PE, and PVC being the most prevalent and exhibiting differential correlations with sperm progressive motility, and highlight the need for further research into the potential reproductive impacts of microplastic exposure.


Asunto(s)
Microplásticos , Semen , Espectrometría Raman , Humanos , Masculino , Semen/química , Microplásticos/análisis , China , Adulto , Motilidad Espermática , Análisis de Semen , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Plásticos/análisis
6.
Natl Sci Rev ; 10(5): nwad023, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37056434

RESUMEN

Continental deep subduction after the closure of large oceanic basins is commonly ascribed to the gravitational pull of the subducting oceanic slab. However, it is not clear how continental lithosphere adjacent to small oceanic basins was subducted to mantle depths. The Sesia Zone in the Western Alps provides an excellent target for exploration of subduction dynamics in such a tectonic setting. Here we report the first finding of coesite in a jadeite-bearing orthogneiss from the Sesia Zone, providing the first evidence for deep subduction of the continental crust to mantle depths for ultrahigh-pressure (UHP) metamorphism in this zone. Three coesite inclusions were identified by laser Raman spectroscopy in two garnet grains. Based on zircon U-Pb dating and trace element analysis, the UHP metamorphic age was constrained to be 76.0 ± 1.0 Ma. The phase equilibrium modeling yields peak metamorphic pressures of 2.8-3.3 GPa, demonstrating the continental deep subduction to mantle depths of >80 km. The subducted continental crust was a rifted hyperextended continental margin, which was converted to the passive continental margin during seafloor spreading and then deeply subducted during the oblique convergence between the Adria microplate and Eurasian plate in the Late Cretaceous. Because the slab pull could only play a limited role in closing small oceanic basins for continental collision, the distal push of either continental breakup or seafloor spreading is suggested as the major driving force for the deep subduction of continental crust in the Western Alps. Therefore, deep subduction of the continental crust bordering small oceanic basins would have been induced by the far-field stress of compression, whereas that bordering large oceanic basins was spontaneous due to the oceanic slab pull. This provides a new insight into the geodynamic mechanism of continental deep subduction.

7.
Nat Commun ; 13(1): 7141, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414676

RESUMEN

Generation of continental crust in collision zones reflect the interplay between oceanic subduction and continental collision. The Gangdese continental crust in southern Tibet developed during subduction of the Neo-Tethyan oceanic slab in the Mesozoic prior to reworking during the India-Asia collision in the Cenozoic. Here we show that continental arc magmatism started with fractional crystallization to form cumulates and associated medium-K calc-alkaline suites. This was followed by a period commencing at ~70 Ma dominated by remelting of pre-existing lower crust, producing more potassic compositions. The increased importance of remelting coincides with an acceleration in the convergence rate between India and Asia leading to higher basaltic flow into the Asian lithosphere, followed by convergence deceleration due to slab breakoff, enabling high heat flow and melting of the base of the arc. This two-stage process of accumulation and remelting leads to the chemical maturation of juvenile continental crust in collision zones, strengthening crustal stratification.

8.
Front Surg ; 8: 741744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765637

RESUMEN

There are many types of benign and malignant tissue, but primary lung tumor is very rare in children and often remains undiagnosed until after distant metastasis has occurred. Few cases of early lung adenocarcinoma in children have been reported. However, this case concerns an 11-year-old child with primary bilateral minimally invasive adenocarcinoma. As far as we know, this is the youngest reported case of its type.

10.
Sci Bull (Beijing) ; 65(4): 329-334, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36659098

RESUMEN

When plate tectonics started to occur on Earth and how it has evolved through time are two of the most fundamental questions in earth sciences. While gravity-driven subducting has been accepted as a critical condition for the operation of plate tectonics on Earth, it is intriguing how the dynamic regime and thermal state of subduction zones have affected the style of plate tectonics in Earth's history. The metamorphic rocks of regional distribution along convergent plate boundaries record reworking of crustal rocks through dehydration and melting at lithospheric depths. The property of regional metamorphism is determined by both dynamic regime and thermal state of plate margins. The two variables have secularly evolved in Earth's history, which is recorded by changes in the global distribution of metamorphic facies series through time. This results in two styles of plate tectonics. Modern-style plate tectonics has developed since the Neoproterozoic when plate margins were rigid enough for cold subducting, whereas ancient-style plate tectonics has developed since the Archean when plate margins were ductile enough for warm subducting. Such a difference is primarily dictated by higher mantle temperatures in the Archean than in the Phanerozoic. The development of plate subduction in both cold and warm realms is primarily dictated by the rheology of plate margins. This leads to a holistic model for the style of plate tectonics during different periods in Earth's history.

11.
Sci Rep ; 9(1): 10630, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337817

RESUMEN

A shift toward a higher oxygen level in both ocean and atmosphere systems during the late Ediacaran to the early Cambrian has been suggested from multiple indirect proxies. However, the mechanism and magnitude of this oxidation remain unclear. To solve this issue, we measured carbon isotopes in both carbonate and organic matter as well as their trace element compositions for an Ediacaran-Cambrian sequence in the Lower Yangtze basin, South China. The δ13Corg and δ13Ccarb excursions of this sequence are coupled and can be compared with contemporaneous global carbon isotope curves. A 2‰ rise in Δ13Ccarb-org occurred from the late Ediacaran to the early Cambrian, suggesting a substantial increase in atmospheric oxygen level from 16% to 30% of the present atmospheric level (PAL). Furthermore, the distribution pattern of rare earth elements and the concentrations of water-insoluble elements in the carbonates indicate a sudden enhancement in chemical weathering of the continental crust during the early Cambrian, which may be a trigger for the rise of atmospheric O2 level. Both the supply of a large amount of nutrients due to the enhanced continental weathering and the contemporary increase of atmospheric oxygen concentrations may have promoted the appearance of large metazoans in the early Cambrian.

12.
Sci Bull (Beijing) ; 64(3): 205-212, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659619

RESUMEN

Hydrothermal ore deposits at convergent plate boundaries represent extraordinary metal enrichment in the continental crust. They are generally associated with felsic magmatism in extensional settings at high thermal gradients. Although their formation is common during accretionary orogeny, more and more ore deposits have been discovered recently in the collisional orogens of China. Because collisional orogeny was operated in a compressional regime at low thermal gradients, it is not favorable for mobilization of ore-forming elements and thus for the production of hydrothermal ore deposits. Nevertheless, continental collision is generally preceded by oceanic subduction, which enables the preliminary enrichment of ore-forming elements in the mantle wedge due to chemical metasomatism by subducting slab-derived fluids. This gave rise to metal pre-enriched domains in the overriding lithosphere, which may be reactivated by extensional tectonism for hydrothermal mineralization either immediately during accretionary orogeny or at a later time during and after collisional orogeny. It is these tectonic processes that have resulted in the progressive enrichment of ore-forming elements through the geochemical differentiation of the subducting oceanic crust, the metasomatic mantle domains and the mafic juvenile crust, respectively, at different depths. Finally, the reactivation of metal pre-enriched domains by continental rifting in the orogenic lithosphere is the key to the metallogenesis of collisional orogens.

13.
Sci Rep ; 8(1): 17473, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30478414

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

14.
Sci Rep ; 8(1): 178, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317729

RESUMEN

Crustal components may be incorporated into continental basalts by either shallow contamination or deep mixing. While the former proceeds at crustal depths with common preservation of refractory minerals, the latter occurs at mantle depths with rare survival of relict minerals. Discrimination between the two mechanisms has great bearing to subcontinental mantle geochemistry. Here we report the occurrence of relict zircons in Cenozoic continental basalts from eastern China. A combined study of zircon U-Pb ages and geochemistry indicates that detrital zircons were carried by terrigenous sediments into a subcontinental subduction zone, where the zircon were transferred by fluids into the magma sources of continental basalts. The basalts were sampled from three petrotectonic units with distinct differences in their magmatic and metamorphic ages, making the crustal contamination discernible. The terrigenous sediments were carried by the subducting oceanic crust into the asthenospheric mantle, producing both soluble and insoluble materials at the slab-mantle interface. These materials were served as metasomatic agents to react with the overlying mantle wedge peridotite, generating a kind of ultramafic metasomatites that contain the relict zircons. Therefore, the occurrence of relict zircons in continental basalts indicates that this refractory mineral can survive extreme temperature-pressure conditions in the asthenospheric mantle.

15.
Sci Bull (Beijing) ; 63(24): 1649-1654, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36658857

RESUMEN

The timing of continental collision between India and Asia has been controversial for a long time because of the difficulty in screening isotopic ages for different types of tectonothermal event along the convergent continental boundary. After distinguishing the collisional orogeny from the precollisional accretionary orogeny and the postcollisional rifting orogeny, an age range of 55 ±â€¯10 Ma is obtained to mark the collisional orogeny in the Early Cenozoic rather than throughout the Cenozoic. This age range provides the resolution to the timing of tectonic reactivation not only for reworking of the marginal arc systems in the Early Cenozoic but also for overprinting of granulite facies metamorphism on eclogites in the Late Cenozoic. In particular, superimposition of the rifting orogeny on both accretionary and collisional orogens in the Late Cenozoic is the key to the reactivation of both Gangdese and Himalayan orogens for contemporaneous metamorphism and magmatism at high thermal gradients. Therefore, rise of the plateau may be caused by underplating of the asthenospheric mantle for rifting orogeny in the composite Himalayan-Tibetan orogens after foundering of their roots in the Late Cenozoic.

16.
Rapid Commun Mass Spectrom ; 32(1): 48-56, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28987010

RESUMEN

RATIONALE: Continuous-flow isotope ratio mass spectrometry (CF-IRMS) is a specialized technique used to quickly analyze very small amounts of sample. We have used CF-IRMS to assess the influences of sample weight and relative carbon content on the accuracy and precision of the δ13 C values of micro amounts of carbonate and non-carbonate in silicate rocks. METHODS: The analytical work was performed on a Gasbench II (GB) sample preparation device and on an Elemental Analyzer (EA), which were both interfaced to CF-IRMS instruments. Potential silicate matrix effects on the carbon isotopic analyses were investigated by measuring mixtures of calibrated carbon reference materials and quartz powder. The calibration lines, established by the measured raw values and the known values of three reference materials mixed with quartz powder, were used to calibrate the δ13 C values of basalt samples from eastern China. RESULTS: The δ13 C values measured by GB-CF-IRMS of one national carbonate reference material, GBW04416, deviate slightly from the known value for approximately 20-70 µg of carbonate contained in 4.5-mL vials; the smaller the sample size, the lower the measured δ13 C values. External precision better than 0.1‰ (1σ, n = 26) is achieved at a signal intensity for mass 44 of between 868 and 1614 mV, corresponding to a sample weight of 30.8-50.2 µg, whereas it is reduced to 0.27‰ (1σ, n = 34) at a signal intensity between 519 and 1614 mV, corresponding to a sample weight of 21.1-50.2 µg. In the EA-CF-IRMS experiments for non-carbonate carbon, at high carbon concentration (greater than 800 ppm) and at optimum sample weights, the accuracy and precision are both better than 0.2‰. For carbon concentrations less than 500 ppm, the measured δ13 C values deviate from the average by up to -1.2‰ and the precision is 0.74‰. CONCLUSIONS: The measured δ13 C values decrease substantially at lower carbon concentration and higher sample weights, and poorer precision is obtained. Suggestions are made to measure repeatedly the same carbon concentration of sample and reference materials in order to obtain not only reproducible, but also accurate carbon isotope ratios.

17.
Nat Commun ; 7: 10885, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26947562

RESUMEN

Authigenic carbonate was recently invoked as a third major global carbon sink in addition to primary marine carbonate and organic carbon. Distinguishing the two carbonate sinks is fundamental to our understanding of Earth's carbon cycle and its role in regulating the evolution of atmospheric oxygen. Here, using microscale geochemical measurements of carbonates in Early Triassic strata, we show that the growth of authigenic carbonate follows a different trajectory from primary marine carbonate in a cross-plot of uranium concentration and carbon isotope composition. Thus, a combination of the two geochemical variables is able to distinguish between the two carbonate sinks. The temporal distribution of authigenic carbonates in the Early Triassic strata suggests that the increase in the extent of carbonate authigenesis acted as a negative feedback to the elevated atmospheric CO2 concentration.

18.
Isotopes Environ Health Stud ; 52(1-2): 29-46, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25393769

RESUMEN

Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates.


Asunto(s)
Carbonatos/análisis , Fraccionamiento Químico/métodos , Oxígeno/química , Bario/análisis , Isótopos de Carbono/química , Cristalografía , Plomo/análisis , Magnesio/análisis , Isótopos de Oxígeno/química
19.
Isotopes Environ Health Stud ; 52(1-2): 47-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25587823

RESUMEN

Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates.


Asunto(s)
Apatitas/química , Fraccionamiento Químico/métodos , Oxígeno/química , Fosfatos/análisis , Aniones , Isótopos de Oxígeno/química
20.
Steroids ; 85: 13-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24726440

RESUMEN

Novel C6-cyclo secondary amine substituted purine steroid-nucleoside analogues (2-9) were efficiently synthesized through displacement of the C6 chloro on the purine ring of series 1 with versatile cyclic secondary amines, including pyrrolidines, piperidine, morpholine, and piperazines. All the newly-synthesized compounds were evaluated for their anticancer activity in vitro against Hela, PC-3 and MCF-7 cell lines. Among them, compounds 5c and 6b exhibited significant cytotoxicity on PC-3 cell lines.


Asunto(s)
Aminas/síntesis química , Purinas/síntesis química , Esteroides/síntesis química , Aminas/química , Antivirales/administración & dosificación , Células HeLa , Humanos , Células MCF-7 , Nucleósidos/química , Purinas/química , Esteroides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA