Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Cancer ; 131(4): 655-667, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951697

RESUMEN

BACKGROUND: DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS: To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS: We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION: Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Línea Celular Tumoral , Apoptosis , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Femenino
2.
Chem Commun (Camb) ; 60(68): 8997-9006, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39081131

RESUMEN

Spin properties are intrinsic characters of electrons. Radical molecules contain unpaired electron(s), and their unique chemical and physical properties make them an ideal platform for investigating spin properties in molecular systems. Among them, the burgeoning interest in stable conjugated diradicals is attributed to their distinctive characteristics, notably the dynamic resonance structures between open-shell and closed-shell forms, the malleability of their spin states, and the profound influence of intermolecular spin-spin interactions. A deep understanding of the spin characteristics of unpaired electrons in stable conjugated diradicals provides guidance for the design, synthesis, and characterization of radical-based materials. In this review, we discuss the unique spin delocalization, spin states, and spin-spin coupling characteristics of conjugated diradicals and emphasize how to precisely control these spin characteristics to understand their role in the molecules and as functional radical materials.

3.
Chemistry ; : e202402094, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031525

RESUMEN

A comprehensive investigation of two new molecular triads incorporating the diketopyrrolopyrrole unit into a quinoidized thienothiophene skeleton, which is further end-capped with dicyanomethylene (DPP-TT-CN) or phenoxyl groups (DPP-TT-PhO), has been carried out. A combination of UV-Vis-NIR and infrared spectroelectrochemical techniques and cryogenic UV-Vis-NIR absorption spectroscopy supported by theoretical calculations has been used. The main result is the formation of similar H-aggregates in the dimerization process of the neutral molecules and of the charged anionic species. The experimental absorption spectra of the aggregated species are accurately reproduced by quantum chemical calculations using the Spano's model, including excitonic coupling for the dimeric forms and full vibronic resolution of the absorption bands. The strong excitonic coupling taking place is key to understand the electronic structure of the dimeric aggregates and has been instrumental to disentangle the type of H-aggregation. This study is of relevance to get a better understanding of the molecular aggregation of organic p-conjugated chromophores and is useful as a guideline for the refinement of the engineering of molecular materials for which supramolecular design is required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA