Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
2.
J Pharm Sci ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768757

RESUMEN

Nanoparticles composed of Levan and Dolutegravir (DTG) have been successfully synthesized using a spray drying procedure specifically designed for milk/food admixture applications. Levan, obtained from the microorganism Bacillus subtilis, was thoroughly characterized using MALDI-TOF and solid-state NMR technique to confirm its properties. In the present study, this isolated Levan was utilized as a carrier for drug delivery applications. The optimized spray-dried nanoparticles exhibited a smooth surface morphology with particle sizes ranging from 195 to 329 nm. In the in-vitro drug release experiments conducted in water media, the spray-dried nanoparticles showed 100 % release, whereas the unprocessed drug exhibited only 50 % release at the end of 24 h. Notably, the drug release in milk was comparable to that in plain media, indicating the compatibility. The improved dissolution rate observed for the nanoparticles could be attributed to the solid-state conversion (confirmed by XRD analysis) of DTG from its crystalline to amorphous state. The stability of the drug was verified using Fourier Transform Infra-Red Spectroscopy and Thermogravimetry-Differential Scanning Calorimetry analysis. To evaluate the in-vitro cellular toxicity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was conducted, which revealed the CC50 value of 88.88 ± 5.10 µg/mL for unprocessed DTG and 101.08 ± 37.37 µg/mL for DTG nanoparticles. These results indicated that the toxicity of the nanoparticles was comparable to the unprocessed drug. Furthermore, the anti-HIV activity of the nanoparticles in human cell lines was found to be similar to that of the pure drug, emphasizing the therapeutic efficacy of DTG in combating HIV.

3.
AIDS ; 38(6): 803-812, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578958

RESUMEN

OBJECTIVES: There is conflicting data regarding the response of older people with HIV (PWH) to antiretroviral therapy (ART). The objective of this study was to evaluate the long-term immunological and virological responses, changes in regimen, and adverse drug reactions (ADRs) in older participants (50+ years) compared with younger (18-34 years) and middle-aged (35-49 years) PWH. METHODS: A retrospective review of medical records was conducted on 1622 participants who received ART in Yunnan Province, China, from 2010 to 2019. The study compared CD4+ T-cell counts, CD4+/CD8+ ratio, and relative numbers between different groups using the Kruskal-Wallis test. Cox proportional hazards regression models were used to identify variables associated with the occurrence of immune reconstitution insufficiency. The rates of immune reconstitution, incidence of ADRs, and rates of treatment change were analyzed using the chi-squared test or Fisher's exact test. RESULTS: Over 95% achieved viral load 200 copies/ml or less, with no age-related difference. However, older participants exhibited significantly lower CD4+ T-cell counts and CD4+/CD8+ recovery post-ART (P < 0.001), with only 32.21% achieving immune reconstitution (compared with young: 52.16%, middle-aged: 39.29%, P < 0.001) at the end of follow-up. Middle-aged and elderly participants changed ART regimens more because of ADRs, especially bone marrow suppression and renal dysfunction. CONCLUSION: Although the virological response was consistent across age groups, older individuals showed poorer immune responses and higher susceptibility to side effects. This underscores the need for tailored interventions and comprehensive management for older patients with HIV.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Persona de Mediana Edad , Anciano , Humanos , Infecciones por VIH/tratamiento farmacológico , Fármacos Anti-VIH/efectos adversos , China , Resultado del Tratamiento , Recuento de Linfocito CD4 , Carga Viral
4.
Chin J Nat Med ; 22(4): 365-374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658099

RESUMEN

Phorbol esters are recognized for their dual role as anti-HIV-1 agents and as activators of protein kinase C (PKC). The efficacy of phorbol esters in binding with PKC is attributed to the presence of oxygen groups at positions C20, C3/C4, and C9 of phorbol. Concurrently, the lipids located at positions C12/C13 are essential for both the anti-HIV-1 activity and the formation of the PKC-ligand complex. The influence of the cyclopropane ring at positions C13 and C14 in phorbol derivatives on their anti-HIV-1 activity requires further exploration. This research entailed the hydrolysis of phorbol, producing seco-cyclic phorbol derivatives. The anti-HIV-1 efficacy of these derivatives was assessed, and the affinity constant (Kd) for PKC-δ protein of selected seco-cyclic phorbol derivatives was determined through isothermal titration calorimetry. The findings suggest that the chemical modification of cyclopropanols could affect both the anti-HIV-1 activity and the PKC binding affinity. Remarkably, compound S11, with an EC50 of 0.27 µmol·L-1 and a CC50 of 153.92 µmol·L-1, demonstrated a potent inhibitory effect on the intermediate products of HIV-1 reverse transcription (ssDNA and 2LTR), likely acting at the viral entry stage, yet showed no affinity for the PKC-δ protein. These results position compound S11 as a potential candidate for further preclinical investigation and for studies aimed at elucidating the pharmacological mechanism underlying its anti-HIV-1 activity.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , VIH-1/efectos de los fármacos , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Ésteres del Forbol/farmacología , Ésteres del Forbol/química , Estructura Molecular , Proteína Quinasa C/metabolismo , Proteína Quinasa C/química , Relación Estructura-Actividad
5.
Artículo en Inglés | MEDLINE | ID: mdl-38535626

RESUMEN

HIV/AIDS cannot be cured because of the persistence of the viral reservoir. Because of the complexity of the cellular composition and structure of the human organs, HIV reservoirs of anatomical site are also complex. Recently, although a variety of molecules have been reported to be involved in the establishment and maintenance of the viral reservoirs, or as marker of latent cells, the research mainly focuses on blood and lymph nodes. Now, the characteristics of the viral reservoir in tissue are not yet fully understood. In this study, various tissues were collected from SIVmac239-infected monkeys, and the level of total SIV DNA, SIV 2-LTR DNA, and cell-associated virus RNA in them were compared with character of the anatomical viral reservoir under early treatment. The results showed that short-term combination antiretroviral therapy (cART) starting from 3 days after infection could significantly inhibit viremia and reduce the size of the anatomical viral reservoir, but it could not eradicate de novo infections and ongoing replication of virus. Moreover, the effects of early cART on the level of total SIV DNA, SIV 2-LTR DNA, and cell-associated virus RNA in different tissues were different, which changed the size distribution of viral reservoir in anatomical site. Finally, the contribution of nonlymphoid tissues, especially liver and lung, to the viral reservoir increased after treatment, while the contribution of intestinal lymphoid to the viral reservoir significantly reduced. These results suggested that early treatment effectively decreased the size of viral reservoir, and that the effects of cART on the tissue viral reservoir varied greatly by tissue type. The results implied that persistent existence of virus in nonlymphoid tissues after short-term treatment suggested that the role of nonlymphoid tissues cannot be ignored in development strategies for AIDS therapy.

6.
Zool Res ; 45(2): 429-438, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38485510

RESUMEN

The Chinese tree shrew ( Tupaia belangeri chinensis), a member of the mammalian order Scandentia, exhibits considerable similarities with primates, including humans, in aspects of its nervous, immune, and metabolic systems. These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer, infectious diseases, metabolic disorders, and mental health conditions. Herein, we used meta-transcriptomic sequencing to analyze plasma, as well as oral and anal swab samples, from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses. In total, eight mammalian viruses with complete genomes were identified, belonging to six viral families, including Flaviviridae, Hepeviridae, Parvovirinae, Picornaviridae, Sedoreoviridae, and Spinareoviridae. Notably, the presence of rotavirus was recorded in tree shrews for the first time. Three viruses - hepacivirus 1, parvovirus, and picornavirus - exhibited low genetic similarity (<70%) with previously reported viruses at the whole-genome scale, indicating novelty. Conversely, three other viruses - hepacivirus 2, hepatovirus A and hepevirus - exhibited high similarity (>94%) to known viral strains. Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants. These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews, highlighting the necessity for further research into their potential for cross-species transmission.


Asunto(s)
Tupaia , Virus , Animales , Filogenia , Primates , Musarañas , Tupaia/fisiología , Tupaiidae
7.
Virol Sin ; 39(2): 309-318, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458399

RESUMEN

SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.


Asunto(s)
Bronquios , COVID-19 , Degranulación de la Célula , Mastocitos , SARS-CoV-2 , Tráquea , Animales , Mastocitos/virología , Mastocitos/inmunología , COVID-19/inmunología , COVID-19/virología , COVID-19/patología , Ratones , Tráquea/virología , Tráquea/patología , Bronquios/virología , Bronquios/patología , Humanos , Inflamación/virología , Células Epiteliales/virología , Modelos Animales de Enfermedad
8.
Viruses ; 16(3)2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38543730

RESUMEN

Members of the Flaviviridae family, encompassing the Flavivirus and Hepacivirus genera, are implicated in a spectrum of severe human pathologies. These diseases span a diverse spectrum, including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, and adverse fetal outcomes, such as congenital heart defects and increased mortality rates. Notably, infections by Flaviviridae viruses have been associated with substantial cardiovascular compromise, yet the exploration into the attendant cardiovascular sequelae and underlying mechanisms remains relatively underexplored. This review aims to explore the epidemiology of Flaviviridae virus infections and synthesize their cardiovascular morbidities. Leveraging current research trajectories and our investigative contributions, we aspire to construct a cogent theoretical framework elucidating the pathogenesis of Flaviviridae-induced cardiovascular injury and illuminate prospective therapeutic avenues.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por Flaviviridae , Flaviviridae , Flavivirus , Humanos , Enfermedades Cardiovasculares/epidemiología , Flaviviridae/genética , Hepacivirus
9.
Cell Mol Immunol ; 21(5): 479-494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38443447

RESUMEN

Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one ß-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 ß-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many ß-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.


Asunto(s)
Amiloide , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH , VIH-1 , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Humanos , Amiloide/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Proteínas Amiloidogénicas/metabolismo , Virión/metabolismo , Péptidos/metabolismo , Péptidos/química , Péptidos/farmacología
10.
Elife ; 132024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38375778

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The induction of ACE2 expression may serve as a strategy by SARS-CoV-2 to facilitate its propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. Using 45 different luciferase reporters, the transcription factors SP1 and HNF4α were found to positively and negatively regulate ACE2 expression, respectively, at the transcriptional level in human lung epithelial cells (HPAEpiCs). SARS-CoV-2 infection increased the transcriptional activity of SP1 while inhibiting that of HNF4α. The PI3K/AKT signaling pathway, activated by SARS-CoV-2 infection, served as a crucial regulatory node, inducing ACE2 expression by enhancing SP1 phosphorylation-a marker of its activity-and reducing the nuclear localization of HNF4α. However, colchicine treatment inhibited the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. In Syrian hamsters (Mesocricetus auratus) infected with SARS-CoV-2, inhibition of SP1 by either mithramycin A or colchicine resulted in reduced viral replication and tissue injury. In summary, our study uncovers a novel function of SP1 in the regulation of ACE2 expression and identifies SP1 as a potential target to reduce SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Factor de Transcripción Sp1 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Colchicina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , SARS-CoV-2/metabolismo , Factor de Transcripción Sp1/metabolismo
11.
Chin J Nat Med ; 22(2): 146-160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38342567

RESUMEN

In this study, 37 derivatives of phorbol esters were synthesized and their anti-HIV-1 activities evaluated, building upon our previous synthesis of 51 phorbol derivatives. 12-Para-electron-acceptor-trans-cinnamoyl-13-decanoyl phorbol derivatives stood out, demonstrating remarkable anti-HIV-1 activities and inhibitory effects on syncytia formation. These derivatives exhibited a higher safety index compared with the positive control drug. Among them, 12-(trans-4-fluorocinnamoyl)-13-decanoyl phorbol, designated as compound 3c, exhibited the most potent anti-HIV-1 activity (EC50 2.9 nmol·L-1, CC50/EC50 11 117.24) and significantly inhibited the formation of syncytium (EC50 7.0 nmol·L-1, CC50/EC50 4891.43). Moreover, compound 3c is hypothesized to act both as an HIV-1 entry inhibitor and as an HIV-1 reverse transcriptase inhibitor. Isothermal titration calorimetry and molecular docking studies indicated that compound 3c may also function as a natural activator of protein kinase C (PKC). Therefore, compound 3c emerges as a potential candidate for developing new anti-HIV drugs.


Asunto(s)
Fármacos Anti-VIH , Forboles , Simulación del Acoplamiento Molecular , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Forboles/química , Forboles/farmacología , Ésteres del Forbol/farmacología , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Relación Estructura-Actividad
12.
Chin Herb Med ; 16(1): 106-112, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38375049

RESUMEN

Objective: Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from Pulsatilla chinensis, inhibited influenza virus FM1 or Klebsiella pneumoniae-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 in vivo and in vitro. Methods: The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for in vitro assays. The antiviral effect of AB4 in vivo was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining. Results: The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. In vivo antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-ß response via the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism. Conclusion: Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.

13.
Natl Sci Rev ; 11(2): nwae030, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333067

RESUMEN

Vaccines have been the primary remedy in the global fight against coronavirus disease 2019 (COVID-19). The receptor-binding domain (RBD) of the spike protein, a critical viral immunogen, is affected by the heterogeneity of its glycan structures and relatively low immunogenicity. Here, we describe a scalable synthetic platform that enables the precise synthesis of homogeneously glycosylated RBD, facilitating the elucidation of carbohydrate structure-function relationships. Five homogeneously glycosylated RBDs bearing biantennary glycans were prepared, three of which were conjugated to T-helper epitope (Tpep) from tetanus toxoid to improve their weak immune response. Relative to natural HEK293-derived RBD, synthetic RBDs with biantennary N-glycan elicited a higher level of neutralising antibodies against SARS-CoV-2 in mice. Furthermore, RBDs containing Tpep elicited significant immune responses in transgenic mice expressing human angiotensin-converting enzyme 2. Our collective data suggest that trimming the N-glycans and Tpep conjugation of RBD could potentially serve as an effective strategy for developing subunit vaccines providing efficient protection.

14.
ACS Med Chem Lett ; 15(1): 60-68, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38229757

RESUMEN

Bromodomain-containing protein 4 (BRD4) inhibitors have been proven to be a promising option for anti-HIV-1 latency therapeutics. We herein describe the design, synthesis, and anti-HIV-1 latency bioevaluation of triazolopyridine derivatives as BRD4 inhibitors. Among them, compound 13d displayed favorable HIV-1 reactivation and prominent safety profile without triggering abnormal immune activation. It exerted strong synergism when combined with the PKC activator prostratin and has the same BRD4-targeting latency mechanism as observed with JQ1, by stimulating Tat-dependent HIV-1 elongation. Besides, it neither affected the antiviral efficacies of antiviral drugs nor caused secondary infections to uninfected cells and the latency reversing potency of 13d, in turn, was not affected by different classes of antiviral drugs.

15.
Virus Res ; 341: 199313, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38244614

RESUMEN

Human immunodeficiency virus-1 (HIV-1) infection can cause chronic activation, exhaustion, and anergy of the immune system. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is an immune checkpoint molecule, which plays an important role in immune homeostasis and disease. CTLA-4 expression is elevated in HIV-1-infected patients and is associated with disease progression. However, the mechanism controlling expression of CTLA-4 in HIV-1 infection is poorly characterized. In this study, we used a SIV-infected Chinese rhesus macaque (ChRM) model to explore CTLA-4 expression in SIV infection. Results showed that SIV infection significantly increased CTLA-4 expression in all T cell subsets, especially central memory T cells. CTLA-4+CD4+ T cell frequency was significantly associated with disease progression markers. Activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway regulated CTLA-4 expression in CD4+T cells, as confirmed by stimulation with dibutyryl cyclic adenosine monophosphate, forskolin, and 3-isobutyl-1-methylxanthine, and inhibition with H-89 ex vivo. Simultaneously, cAMP concentration in PBMCs and PKA activity in both PBMCs and CD4+ T cells were increased in acute SIV-infected ChRMs, accompanied by an increase in adenylate cyclase 6 expression and a decrease in cAMP-phosphodiesterase 3A (PDE3A), PDE4B, and PDE5A expression in PBMCs. In addition, selective inhibition of PDE4B and PDE5A activity enhanced CTLA-4 expression in CD4+ T cells. These results suggest that SIV infection alters cAMP metabolism and increases cAMP-PKA signaling pathway activation, which up-regulates the expression of CTLA-4 in acute SIVmac239-infected ChRMs. Thus, regulation of the cAMP-PKA signaling pathway may be a potential strategy for the restoration of T cell function and therapy for AIDS.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Linfocitos T CD4-Positivos , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/fisiología , Antígeno CTLA-4/genética , Regulación hacia Arriba , Progresión de la Enfermedad , Transducción de Señal , Adenosina Monofosfato
16.
J Med Virol ; 96(1): e29396, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235848

RESUMEN

The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Factores de Empalme de ARN
17.
Vascul Pharmacol ; 154: 107251, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052330

RESUMEN

BACKGROUND: Hypertension is a prevalent cardiovascular disease characterized by elevated blood pressure and increased vascular resistance. HDAC inhibitors have emerged as potential therapeutic agents due to their ability to modulate gene expression and cellular processes. YPX-C-05, a novel hydroxamic acid-based HDAC inhibitor, shows promise in its vasodilatory effects and potential targets for hypertension treatment. In this study, we aimed to elucidate the mechanisms underlying YPX-C-05's vasodilatory effects and explore its therapeutic potential in hypertension. METHODS: To determine the ex vivo vasodilatory effects of YPX-C-05, isolated aortic rings precontracted with phenylephrine were used. We assessed YPX-C-05's inhibitory effects on HDACs and its impact on histone H4 deacetylation levels in endothelial cells. Network pharmacology analysis was employed to predict putative targets of YPX-C-05 for hypertension treatment. To investigate the involvement of the PI3K/Akt/eNOS pathway, we employed enzyme-linked immunosorbent assay and to assess the levels of NO, ET-1, BH2, and BH4 in human umbilical vein endothelial cells. And we also analyzed the mRNA expression of eNOS and ET-1. Furthermore, Western blotting was conducted to quantify the phosphorylated and total Akt and eNOS levels in human umbilical vein endothelial cell lysates following treatment with YPX-C-05. In order to elucidate the vasodilatory mechanism of YPX-C-05, we employed pharmacological inhibitors for evaluation purposes. Furthermore, we evaluated the chronic antihypertensive effects of YPX-C-05 on N-omega-nitro-L-arginine-induced hypertensive mice in an in vivo model. Vascular remodeling was assessed through histological analysis. RESULTS: Our findings demonstrated that YPX-C-05 exerts significant vasodilatory effects in isolated aortic rings precontracted with phenylephrine. Furthermore, YPX-C-05 exhibited inhibitory effects on HDACs and increased histone H4 acetylation in endothelial cells. Network pharmacology analysis predicted YPX-C-05 might activate endothelial eNOS via PI3K/Akt signaling pathway. Inhibition of the PI3K/Akt/eNOS pathway attenuated the vasodilatory effects of YPX-C-05, as evidenced by reduced levels of phosphorylated Akt and eNOS in human umbilical vein endothelial cell lysates. The chronic administration of YPX-C-05 in N-omega-nitro-L-arginine-induced hypertensive mice resulted in significant antihypertensive effects. Histological analysis demonstrated a reduction in vascular remodeling, further supporting the therapeutic potential of YPX-C-05 in hypertension. CONCLUSION: This study demonstrates for the first time that the novel hydroxamic acid-based HDAC inhibitor YPX-C-05 produces significant antihypertensive and vasodilatory effects through the PI3K/Akt/eNOS pathway. Our findings support the developing prospect of YPX-C-05 as a novel antihypertensive drug.


Asunto(s)
Hipertensión , Proteínas Proto-Oncogénicas c-akt , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Antihipertensivos/farmacología , Remodelación Vascular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Histonas/metabolismo , Histonas/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Arginina , Fenilefrina/metabolismo , Fenilefrina/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo
19.
Redox Biol ; 65: 102837, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544244

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by the SFTS virus (SFTSV) and with a high fatality rate. Thrombocytopenia is a major clinical manifestation observed in SFTS patients, but the underlying mechanism remains largely unclear. Here, we explored the effects of SFTSV infection on platelet function in vivo in severely infected SFTSV IFNar-/- mice and on mouse and human platelet function in vitro. Results showed that SFTSV-induced platelet clearance acceleration may be the main reason for thrombocytopenia. SFTSV-potentiated platelet activation and apoptosis were also observed in infected mice. Further investigation showed that SFTSV infection induced platelet reactive oxygen species (ROS) production and mitochondrial dysfunction. In vitro experiments revealed that administration of SFTSV or SFTSV glycoprotein (Gn) increased activation, apoptosis, ROS production, and mitochondrial dysfunction in separated mouse platelets, which could be effectively ameliorated by the application of antioxidants (NAC (N-acetyl-l-cysteine), SKQ1 (10-(6'-plastoquinonyl) decyltriphenylphosphonium) and resveratrol). In vivo experiments showed that the antioxidants partially rescued SFTSV infection-induced thrombocytopenia by improving excessive ROS production and mitochondrial dysfunction and down-regulating platelet apoptosis and activation. Furthermore, while SFTSV and Gn directly potentiated human platelet activation, it was completely abolished by antioxidants. This study revealed that SFTSV and Gn can directly trigger platelet activation and apoptosis in an ROS-MAPK-dependent manner, which may contribute to thrombocytopenia and hemorrhage during infection, but can be abolished by antioxidants.


Asunto(s)
Infecciones por Bunyaviridae , Síndrome de Trombocitopenia Febril Grave , Trombocitopenia , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno , Infecciones por Bunyaviridae/metabolismo , Antioxidantes , Glicoproteínas/metabolismo , Trombocitopenia/metabolismo , Activación Plaquetaria
20.
Eur J Med Chem ; 259: 115657, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37517202

RESUMEN

The SARS-CoV-2 main protease (Mpro, also named 3CLpro) is a promising antiviral target against COVID-19 due to its functional importance in viral replication and transcription. Herein, we report the discovery of a series of α-ketoamide derivatives as a new class of SARS-CoV-2 Mpro inhibitors. Structure-activity relationship (SAR) of these compounds was analyzed, which led to the identification of a potent Mpro inhibitor (27h) with an IC50 value of 10.9 nM. The crystal structure of Mpro in complex with 27h revealed that α-ketoamide warhead covalently bound to Cys145s of the protease. In an in vitro antiviral assay, 27h showed excellent activity with an EC50 value of 43.6 nM, comparable to the positive control, Nirmatrelvir. This compound displayed high target specificity for Mpro against human proteases and low toxicity. It also possesses favorable pharmacokinetic properties. Overall, compound 27h could be a promising lead compound for drug discovery targeting SARS-CoV-2 Mpro and deserves further in-depth studies.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , Antivirales/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...