Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Opt Lett ; 49(11): 3018-3021, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824317

RESUMEN

We demonstrate a monolithic tunable dual-wavelength laser fabricated on erbium-doped lithium niobate on an insulator (Er:LNOI). The dual-wavelength laser enables independent tuning with a continuously linear electro-optic (EO)-modulated tuning range of 11.875 GHz at a tuning efficiency of 0.63 pm/V. Tunable microwave generation within 50 GHz with a maximum extinction ratio of 35 dB is experimentally demonstrated by further exploring the charge accumulation effect in LNOI. The monolithic design of this work paves the way for microscale integration of laser devices, presenting significant prospects in photonics research and applications.

2.
Opt Lett ; 49(5): 1121-1124, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426953

RESUMEN

Lithium niobate on insulator (LNOI) holds great potential for frequency conversion, where a variety of high-performance nonlinear devices based on different structures has been demonstrated. Here, we report on second harmonic generation (SHG) in MgO-doped LNOI ridge micro-waveguides for efficient green light emission, via an exact type-I noncritical birefringence phase matching (BPM). The LNOI micro-waveguide has a cross section of ∼3×4 µm2, featuring low coupling loss with lens fiber. The normalized conversion efficiency from a continuous-wave (cw) pump to its second harmonic is measured to be 37%/Wcm2 in a single-pass configuration. The device shows both relatively high efficiency and a void of periodic poling, offering a potential solution for efficient and scalable green light sources and frequency converters.

7.
Opt Lett ; 48(5): 1108-1111, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857225

RESUMEN

Frequency conversion via nonlinear wave mixing is an important technology to broaden the spectral range of lasers, propelling their applications in optical communication, spectroscopy, signal processing, and quantum information. Many applications require not only a high conversion efficiency but also a broad phase matching bandwidth. Here, we demonstrate broadband birefringence phase matching (BPM) second-harmonic generation (SHG) in angle-cut lithium niobate-on-insulator (LNOI) ridge waveguides based on a temperature gradient scheme. The bandwidth and shift of the phase matching spectrum can be effectively tuned by controlling the temperature gradient of the waveguide. Broadband SHG of a telecom C-band femtosecond laser is also demonstrated. The approach may open a new avenue for tunable broadband nonlinear frequency conversion in various integrated photonics platforms.

8.
Int J Pharm ; 636: 122844, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925025

RESUMEN

Pancreatic cancer is a malignant disease with high mortality, and its systemic treatment strategy mainly focuses on chemotherapy. Yet, the overall prognosis of pancreatic cancer patients is still extremely poor with a low survival rate. Gemcitabine (GEM) is a widely used chemotherapeutic agent for the treatment of pancreatic cancer. However, GEM chemoresistance remains the major challenge. In this study, we prepared calcium carbonate nanoparticles (CaCO3 NPs) loaded with a nucleotide reductase inhibitor (Triapine) and GEM to suppress the GEM resistance of pancreatic cancer cells (PANC-1/GEM) and solve the problem of poor solubility of Triapine. CaCO3-GEM-Triapine NPs nano-formulations enhanced the therapeutic effect of GEM-based chemotherapy by inhibiting cancer cell proliferation, migration, and resistance to GEM using both 2D PANC-1/GEM cells and 3D tumor spheroids. The study indicated that CaCO3 NPs loaded with GEM and Triapine could provide an effective treatment option to overcome drug resistance in pancreatic cancer.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Humanos , Gemcitabina , Desoxicitidina/farmacología , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
9.
Light Sci Appl ; 12(1): 81, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36977678

RESUMEN

Measuring topological invariants is an essential task in characterizing topological phases of matter. They are usually obtained from the number of edge states due to the bulk-edge correspondence or from interference since they are integrals of the geometric phases in the energy band. It is commonly believed that the bulk band structures could not be directly used to obtain the topological invariants. Here, we implement the experimental extraction of Zak phase from the bulk band structures of a Su-Schrieffer-Heeger (SSH) model in the synthetic frequency dimension. Such synthetic SSH lattices are constructed in the frequency axis of light, by controlling the coupling strengths between the symmetric and antisymmetric supermodes of two bichromatically driven rings. We measure the transmission spectra and obtain the projection of the time-resolved band structure on lattice sites, where a strong contrast between the non-trivial and trivial topological phases is observed. The topological Zak phase is naturally encoded in the bulk band structures of the synthetic SSH lattices, which can hence be experimentally extracted from the transmission spectra in a fiber-based modulated ring platform using a laser with telecom wavelength. Our method of extracting topological phases from the bulk band structure can be further extended to characterize topological invariants in higher dimensions, while the exhibited trivial and non-trivial transmission spectra from the topological transition may find future applications in optical communications.

10.
Opt Lett ; 48(4): 884-887, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790966

RESUMEN

Pulse shaping plays a key role in various applications of ultrafast lasers, such as optical communications, laser micromachining, microscopy, and quantum coherent control. Conventional pulse shaping devices based on liquid crystal spatial light modulators (LCSLMs) or digital micromirror devices (DMDs) only have the shaping speed of several hertz to kilohertz, which is not suitable for applications requiring a high-speed response. Here, we demonstrate a high-speed programmable lithium niobate spatial light modulator (LNSLM) with 128 individual modulation channels and a modulation speed that can reach 1 MHz. Then we establish a high-speed LNSLM-based Fourier-transform (FT) pulse shaper to realize high-speed pulse shaping, and the update rate can reach 350 kHz, only limited by the electric circuit. The proposed high-speed pulse shaper scheme opens new avenues for future applications of ultrafast science, such as microscopic imaging, interaction between light and matter, and spectroscopy.

11.
Opt Lett ; 48(3): 755-758, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723581

RESUMEN

Two coupled resonance modes can lead to exotic transmission spectra due to internal interference processes. Examples include electromagnetically induced transparency (EIT) in atoms and mode splitting in optics. The ability to control individual modes plays a crucial role in controlling such transmission spectra for practical applications. Here we experimentally demonstrate a controllable EIT-like mode splitting in a single microcavity using a double-port excitation. The mode splitting caused by internal coupling between two counter-propagating resonances can be effectively controlled by varying the power of the two inputs, as well as their relative phase. Moreover, the presence of asymmetric scattering in the microcavity leads to chiral behaviors in the mode splitting in the two propagating directions, manifesting itself in terms of a Fano-like resonance mode. These results may offer a compact platform for a tunable device in all-optical information processing.

13.
Opt Express ; 30(14): 24924-24935, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237035

RESUMEN

The dimensionality of a physical system is one of the major parameters defining its physical properties. The recently introduced concept of synthetic dimension has made it possible to arbitrarily manipulate the system of interest and harness light propagation in different ways. It also facilitates the transformative architecture of system-on-a-chip devices enabling far reaching applications such as optical isolation. In this report, a novel architecture based on dynamically-modulated waveguide arrays with the Su-Schrieffer-Heeger configuration in the spatial dimension is proposed and investigated with an eye on a practical implementation. The propagation of light through the one-dimensional waveguide arrays mimics time evolution of the field in a synthetic two-dimensional lattice. The addition of the effective gauge potential leads to an exotic topologically protected one-way transmission along adjacent boundary. A cosine-shape isolated band, which supports the topological Bloch oscillation in the frequency dimension under the effective constant force, appears and is localized at the spatial boundary being robust against small perturbations. This work paves the way to improved light transmission capabilities under topological protections in both spatial and spectral regimes and provides a novel platform based on a technologically feasible lithium niobate platform for optical computing and communication.

14.
Opt Express ; 30(17): 30592-30599, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242159

RESUMEN

With the development of photonic integrated circuits and optical information processing on thin-film lithium niobate (TFLN), the realization of the TFLN-based polarization device is becoming more and more crucial. Here, we demonstrate a polarization modulator on the TFLN platform without polarization diversity. Without polarization manipulation elements, the device only composes a phase modulator and a two-dimensional grating coupler. The structure features small footprint and high fabrication tolerance. The device holds promise for polarization encoding telecommunication.

18.
J Nanobiotechnology ; 20(1): 359, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918698

RESUMEN

The conversion of tumor-promoting M2 macrophage phenotype to tumor-suppressing M1 macrophages is a promising therapeutic approach for cancer treatment. However, the tumor normally provides an abundance of M2 macrophage stimuli, which creates an M2 macrophage-dominant immunosuppressive microenvironment. In our study, docetaxel (DTX) as chemotherapeutic modularity was loaded into M1 macrophage-derived exosomes (M1-Exo) with M1 proinflammatory nature to establish DTX-M1-Exo drug delivery system. We found that DTX-M1-Exo induced naïve M0 macrophages to polarize to M1 phenotype, while failed to repolarize to M2 macrophages upon Interleukin 4 restimulation due to impaired mitochondrial function. This suggests that DTX-M1-Exo can achieve long-term robust M1 activation in immunosuppressive tumor microenvironment. The in vivo results further confirmed that DTX-M1-Exo has a beneficial effect on macrophage infiltration and activation in the tumor tissues. Thus, DTX-M1-Exo is a novel macrophage polarization strategy via combined chemotherapy and immunotherapy to achieve great antitumor therapeutic efficacy.


Asunto(s)
Exosomas , Neoplasias , Docetaxel/farmacología , Exosomas/genética , Humanos , Inmunoterapia , Macrófagos , Neoplasias/patología , Microambiente Tumoral
19.
Phys Rev Lett ; 129(5): 057402, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960578

RESUMEN

Exciton polaritons have shown great potential for applications such as low-threshold lasing, quantum simulation, and dissipation-free circuits. In this paper, we realize a room temperature ultrafast polaritonic switch where the Bose-Einstein condensate population can be depleted at the hundred femtosecond timescale with high extinction ratios. This is achieved by applying an ultrashort optical control pulse, inducing parametric scattering within the photon part of the polariton condensate via a four-wave mixing process. Using a femtosecond angle-resolved spectroscopic imaging technique, the erasure and revival of the polariton condensates can be visualized. The condensate depletion and revival are well modeled by an open-dissipative Gross-Pitaevskii equation including parametric scattering process. This pushes the speed frontier of all-optical controlled polaritonic switches at room temperature towards the THz regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...