Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 367(6480): 912-917, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32079772

RESUMEN

A myriad of cellular events are regulated by allostery; therefore, evolution of this process is of fundamental interest. Here, we use ancestral sequence reconstruction to resurrect ancestors of two colocalizing proteins, Aurora A kinase and its allosteric activator TPX2 (targeting protein for Xklp2), to experimentally characterize the evolutionary path of allosteric activation. Autophosphorylation of the activation loop is the most ancient activation mechanism; it is fully developed in the oldest kinase ancestor and has remained stable over 1 billion years of evolution. As the microtubule-associated protein TPX2 appeared, efficient kinase binding to TPX2 evolved, likely owing to increased fitness by virtue of colocalization. Subsequently, TPX2-mediated allosteric kinase regulation gradually evolved. Surprisingly, evolution of this regulation is encoded in the kinase and did not arise by a dominating mechanism of coevolution.


Asunto(s)
Aurora Quinasa A/clasificación , Aurora Quinasa A/metabolismo , Evolución Molecular , Regulación Alostérica , Animales , Aurora Quinasa A/química , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Filogenia
2.
Cell ; 178(5): 1159-1175.e17, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442405

RESUMEN

Expansion of CAG trinucleotide repeats in ATXN1 causes spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease that impairs coordination and cognition. While ATXN1 is associated with increased Alzheimer's disease (AD) risk, CAG repeat number in AD patients is not changed. Here, we investigated the consequences of ataxin-1 loss of function and discovered that knockout of Atxn1 reduced CIC-ETV4/5-mediated inhibition of Bace1 transcription, leading to increased BACE1 levels and enhanced amyloidogenic cleavage of APP, selectively in AD-vulnerable brain regions. Elevated BACE1 expression exacerbated Aß deposition and gliosis in AD mouse models and impaired hippocampal neurogenesis and olfactory axonal targeting. In SCA1 mice, polyglutamine-expanded mutant ataxin-1 led to the increase of BACE1 post-transcriptionally, both in cerebrum and cerebellum, and caused axonal-targeting deficit and neurodegeneration in the hippocampal CA2 region. These findings suggest that loss of ataxin-1 elevates BACE1 expression and Aß pathology, rendering it a potential contributor to AD risk and pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ataxina-1/metabolismo , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ataxina-1/deficiencia , Ataxina-1/genética , Encéfalo/patología , Región CA2 Hipocampal/metabolismo , Región CA2 Hipocampal/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Frecuencia de los Genes , Humanos , Masculino , Ratones , Ratones Transgénicos , Neurogénesis , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Repeticiones de Trinucleótidos/genética , Regulación hacia Arriba
3.
Proc Natl Acad Sci U S A ; 116(28): 13937-13942, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239342

RESUMEN

Despite being the subject of intense effort and scrutiny, kinases have proven to be consistently challenging targets in inhibitor drug design. A key obstacle has been promiscuity and consequent adverse effects of drugs targeting the ATP binding site. Here we introduce an approach to controlling kinase activity by using monobodies that bind to the highly specific regulatory allosteric pocket of the oncoprotein Aurora A (AurA) kinase, thereby offering the potential for more specific kinase modulators. Strikingly, we identify a series of highly specific monobodies acting either as strong kinase inhibitors or activators via differential recognition of structural motifs in the allosteric pocket. X-ray crystal structures comparing AurA bound to activating vs inhibiting monobodies reveal the atomistic mechanism underlying allosteric modulation. The results reveal 3 major advantages of targeting allosteric vs orthosteric sites: extreme selectivity, ability to inhibit as well as activate, and avoidance of competing with ATP that is present at high concentrations in the cells. We envision that exploiting allosteric networks for inhibition or activation will provide a general, powerful pathway toward rational drug design.


Asunto(s)
Aurora Quinasa A/química , Aurora Quinasa B/química , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica/genética , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/genética , Sitios de Unión/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , Diseño de Fármacos , Dominio de Fibronectina del Tipo III/genética , Humanos , Conformación Proteica , Proteínas Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA