Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 63(2): 322-326, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38227224

RESUMEN

In this work, a detailed study was conducted of the temperature and excitation wavelength-dependent photoluminescence (PL) spectra of the chromium-doped yttrium aluminum garnet (Cr:YAG) transparent ceramic. Focusing on the two sets of zero-phonon lines (ZPLs) of the 2 E→4 A 2 transition in this material, the PL spectra are discovered to evolve significantly with respect to temperature and be highly dependent on the excitation wavelength. Compared to the continuous variation behavior with temperature, an increase in the excitation wavelength leads to a blueshift of the peak position within the regions of 450 nm to 465 nm, 465 nm to 490 nm, and 490 nm to 500 nm, and a sharp change in the PL position at the excitation wavelengths of 465 nm and 490 nm. The electron-phonon coupling (EPC) effect is believed to be more sensitive to the excitation wavelength. Different excitation wavelengths involve different electronic levels participating in the light emission processes, which explains the evolution behavior of the PL peak position with respect to the excitation wavelength. Moreover, the emergence of weak peaks next to the ZPLs at particular temperatures and excitation wavelengths is also observed. This work compares the influence of the temperature and excitation wavelength to the PL properties of the Cr:YAG transparent ceramic, which promotes an advanced understanding of the luminescence behavior of the Cr:YAG transparent ceramics.

2.
Materials (Basel) ; 15(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36143560

RESUMEN

A series of double-perovskite La2Co1−zFezMnO6 (z = 0, 0.2−1.0) ceramics were synthesized using a well-established sol−gel method. The series of samples with a monoclinic phase and a P21/n symmetry were characterized by XRD, FTIR, conductivity, and capacitance measurement to extract charge-transport and dielectric characteristics at room temperature. The obtained IR spectra fitted well with the Lorentz oscillator model to calculate the damping factor, optical frequency, and oscillator strength and compared with the theory, which gave better agreement. The calculated activation energies from the Arrhenius plot supported the semiconducting nature of all samples. The temperature and frequency-dependent dielectric parameters, such as the real part (εr'), imaginary part (ε″) of the dielectric constant, dielectric loss (tanδ), and ac-conductivity (σac) were extracted. The dielectric constant (εr', ε″) and dielectric loss (tanδ) were enhanced at a low frequency, while the ac-conductivity (σac) displayed higher values at higher frequencies. The enhancement in the dielectric parameters with increasing iron concentrations arose due to the higher surface volume fraction of iron (Fe3+) ions than the cobalt (Co3+) ions. The radius of the Fe3+ (0.645 Å) was relatively higher than the Co3+ ions (0.61 Å), significantly influenced by the grains and grain boundaries, and enhanced the barrier for charge mobility at the grain boundaries that play a vital role in space charge polarization.

3.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36014707

RESUMEN

In this work, nanoparticles of Co1-xRexFe2O4 and CoFe2-xRexO4 (0 ≤ x ≤ 0.05) were synthesized by the sol-gel method. The Rietveld refinement analysis of XRD and Raman data revealed that all of the prepared samples were single phase with a cubic spinel-type structure. With the substitution of Re, the lattice parameters were slightly increased, and Raman spectra peak positions corresponding to the movement of the tetrahedral sublattice shifted to a higher energy position. Furthermore, Raman spectra showed the splitting of T2g mode into branches, indicating the presence of different cations at crystallographic A- and B-sites. The SEM micrograph confirms that surface Re exchange changes the coordination environment of metals and induces Fe-site structure distortion, thereby revealing more active sites for reactions and indicating the bulk sample's porous and agglomerated morphology. The vibrating sample magnetometer (VSM) results demonstrated that the synthesized nanoparticles of all samples were ferromagnetic across the entire temperature range of 300-4 K. The estimated magnetic parameters, such as the saturation magnetization, remanent magnetization, coercivity, blocking temperature (TB), and magnetic anisotropy, were found to reduce for the Co-site doping with the increasing doping ratio of Re, while in the Fe site, they enhanced with the increasing doping ratio. The ZFC-FC magnetization curve revealed the presence of spin-glass-like behavior due to the strong dipole-dipole interactions in these ferrite nanoparticles over the whole temperature range. Finally, the dielectric constant (εr') and dielectric loss (tanδ) were sharply enhanced at low frequencies, while the AC conductivity increased at high frequencies. The sharp increases at high temperatures are explained by enhancing the barrier for charge mobility at grain boundaries, suggesting that samples were highly resistive. Interestingly, these parameters (εr', tanδ) were found to be higher for the Fe-site doping with the increasing Re doping ratio compared with the Co site.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...