Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
1.
Ageing Res Rev ; 99: 102416, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002644

RESUMEN

Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.

2.
Sci Transl Med ; 16(753): eadk0330, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924427

RESUMEN

Targeting ferroptosis for cancer therapy has slowed because of an incomplete understanding of ferroptosis mechanisms under specific pathological contexts such as tumorigenesis and cancer treatment. Here, we identify TRPML1-mediated lysosomal exocytosis as a potential anti-ferroptotic process through genome-wide CRISPR-Cas9 activation and kinase inhibitor library screening. AKT directly phosphorylated TRPML1 at Ser343 and inhibited K552 ubiquitination and proteasome degradation of TRPML1, thereby promoting TRPML1 binding to ARL8B to trigger lysosomal exocytosis. This boosted ferroptosis defense of AKT-hyperactivated cancer cells by reducing intracellular ferrous iron and enhancing membrane repair. Correlation analysis and functional analysis revealed that TRPML1-mediated ferroptosis resistance is a previously unrecognized feature of AKT-hyperactivated cancers and is necessary for AKT-driven tumorigenesis and cancer therapeutic resistance. TRPML1 inactivation or blockade of the interaction between TRPML1 and ARL8B inhibited AKT-driven tumorigenesis and cancer therapeutic resistance in vitro and in vivo by promoting ferroptosis. A synthetic peptide targeting TRPML1 inhibited AKT-driven tumorigenesis and enhanced the sensitivity of AKT-hyperactivated tumors to ferroptosis inducers, radiotherapy, and immunotherapy by boosting ferroptosis in vivo. Together, our findings identified TRPML1 as a therapeutic target in AKT-hyperactivated cancer.


Asunto(s)
Ferroptosis , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Factores de Ribosilacion-ADP/metabolismo , Carcinogénesis/patología , Carcinogénesis/genética , Línea Celular Tumoral , Ferroptosis/efectos de los fármacos , Lisosomas/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitinación
3.
Front Nutr ; 11: 1356207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863588

RESUMEN

Background: Currently, the association between the consumption of polyunsaturated fatty acids (PUFAs) and the susceptibility to autoimmune rheumatic diseases (ARDs) remains conflict and lacks substantial evidence in various clinical studies. To address this issue, we employed Mendelian randomization (MR) to establish causal links between six types of PUFAs and their connection to the risk of ARDs. Methods: We retrieved summary-level data on six types of PUFAs, and five different types of ARDs from publicly accessible GWAS statistics. Causal relationships were determined using a two-sample MR analysis, with the IVW approach serving as the primary analysis method. To ensure the reliability of our research findings, we used four complementary approaches and conducted multivariable MR analysis (MVMR). Additionally, we investigated reverse causality through a reverse MR analysis. Results: Our results indicate that a heightened genetic predisposition for elevated levels of EPA (ORIVW: 0.924, 95% CI: 0.666-1.283, P IVW = 0.025) was linked to a decreased susceptibility to psoriatic arthritis (PsA). Importantly, the genetically predicted higher levels of EPA remain significantly associated with an reduced risk of PsA, even after adjusting for multiple testing using the FDR method (P IVW-FDR-corrected = 0.033) and multivariable MR analysis (P MV-IVW < 0.05), indicating that EPA may be considered as the risk-protecting PUFAs for PsA. Additionally, high levels of LA showed a positive causal relationship with a higher risk of PsA (ORIVW: 1.248, 95% CI: 1.013-1.538, P IVW = 0.037). It is interesting to note, however, that the effects of these associations were weakened in our MVMR analyses, which incorporated adjustment for lipid profiles (P MV-IVW > 0.05) and multiple testing using the FDR method (P IVW-FDR-corrected = 0.062). Moreover, effects of total omega-3 PUFAs, DHA, EPA, and LA on PsA, were massively driven by SNP effects in the FADS gene region. Furthermore, no causal association was identified between the concentrations of other circulating PUFAs and the risk of other ARDs. Further analysis revealed no significant horizontal pleiotropy and heterogeneity or reverse causality. Conclusion: Our comprehensive MR analysis indicated that EPA is a key omega-3 PUFA that may protect against PsA but not other ARDs. The FADS2 gene appears to play a central role in mediating the effects of omega-3 PUFAs on PsA risk. These findings suggest that EPA supplementation may be a promising strategy for preventing PsA onset. Further well-powered epidemiological studies and clinical trials are warranted to explore the potential mechanisms underlying the protective effects of EPA in PsA.

4.
Water Res ; 258: 121778, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795549

RESUMEN

Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.


Asunto(s)
Nitrógeno , Oxidación-Reducción , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo
5.
Antonie Van Leeuwenhoek ; 117(1): 74, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691182

RESUMEN

A Gram-stain positive, aerobic, alkalitolerant and halotolerant bacterium, designated HH7-29 T, was isolated from the confluence of the Fenhe River and the Yellow River in Shanxi Province, PR China. Growth occurred at pH 6.0-12.0 (optimum, pH 8.0-8.5) and 15-40℃ (optimum, 32℃) with 0.5-24% NaCl (optimum, 2-9%). The predominant fatty acids (> 10.0%) were iso-C15:0 and anteiso-C15:0. The major menaquinones were MK-7 and MK-8. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain HH7-29 T was a member of the genus Jeotgalibacillus, exhibiting high sequence similarity to the 16S rRNA gene sequences of Jeotgalibacillus alkaliphilus JC303T (98.4%), Jeotgalibacillus salarius ASL-1 T (98.1%) and Jeotgalibacillus alimentarius YKJ-13 T (98.1%). The genomic DNA G + C content was 43.0%. Gene annotation showed that strain HH7-29 T had lower protein isoelectric points (pIs) and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt and alkali. The average nucleotide identity, digital DNA-DNA hybridization values, amino acid identity values, and percentage of conserved proteins values between strain HH7-29 T and its related species were 71.1-83.8%, 19.5-27.4%, 66.5-88.4% and 59.8-76.6%, respectively. Based on the analyses of phenotypic, chemotaxonomic, phylogenetic and genomic features, strain HH7-29 T represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus haloalkalitolerans sp. nov. is proposed. The type strain is HH7-29 T (= KCTC 43417 T = MCCC 1K07541T).


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Ríos , ARN Ribosómico 16S/genética , China , Ríos/microbiología , ADN Bacteriano/genética , Ácidos Grasos/análisis , Cloruro de Sodio/metabolismo , Técnicas de Tipificación Bacteriana , Fosfolípidos/análisis , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico
6.
J Phys Chem Lett ; 15(21): 5594-5599, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38755539

RESUMEN

In recent years, silver nanoparticles (Ag NPs) have been used as positive electrode material for zinc/silver batteries, and the silver oxides formed during the charging process determine the discharge performance of batteries. Therefore, it is important to study the oxidation behavior of Ag NPs in alkaline solution. Single-nanoparticle collision is an important tool for analyzing oxidation behavior of individual nanoparticles. Based on thermodynamic information from collision events, it is known that oxidation products are potential-dependent and size-dependent. Based on dynamic information, including collisional peak shapes and duration time, it was observed that the Ag NP collision oxidation process changed from stepwise oxidation to direct oxidation as the potential increased or size decreased. This work provides guidance for application of Ag NPs in zinc/silver batteries and proposed a strategy for oxidation behavior of individual NP that could be tracked in situ through an all-encompassing view of thermodynamic and dynamic information.

7.
Anal Chem ; 96(19): 7747-7755, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691774

RESUMEN

Accurate classification of tumor cells is of importance for cancer diagnosis and further therapy. In this study, we develop multimolecular marker-activated transmembrane DNA computing systems (MTD). Employing the cell membrane as a native gate, the MTD system enables direct signal output following simple spatial events of "transmembrane" and "in-cell target encounter", bypassing the need of multistep signal conversion. The MTD system comprises two intelligent nanorobots capable of independently sensing three molecular markers (MUC1, EpCAM, and miR-21), resulting in comprehensive analysis. Our AND-AND logic-gated system (MTDAND-AND) demonstrates exceptional specificity, allowing targeted release of drug-DNA specifically in MCF-7 cells. Furthermore, the transformed OR-AND logic-gated system (MTDOR-AND) exhibits broader adaptability, facilitating the release of drug-DNA in three positive cancer cell lines (MCF-7, HeLa, and HepG2). Importantly, MTDAND-AND and MTDOR-AND, while possessing distinct personalized therapeutic potential, share the ability of outputting three imaging signals without any intermediate conversion steps. This feature ensures precise classification cross diverse cells (MCF-7, HeLa, HepG2, and MCF-10A), even in mixed populations. This study provides a straightforward yet effective solution to augment the versatility and precision of DNA computing systems, advancing their potential applications in biomedical diagnostic and therapeutic research.


Asunto(s)
ADN , Molécula de Adhesión Celular Epitelial , MicroARNs , Humanos , Molécula de Adhesión Celular Epitelial/metabolismo , ADN/química , MicroARNs/análisis , MicroARNs/metabolismo , Mucina-1/metabolismo , Mucina-1/análisis , Computadores Moleculares , Células MCF-7 , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Membrana Celular/metabolismo , Membrana Celular/química , Células Hep G2
8.
Protein Expr Purif ; 219: 106482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583789

RESUMEN

GH11 enzyme is known to be specific and efficient for the hydrolysis of xylan. It has been isolated from many microorganisms, and its enzymatic characteristics and thermostability vary between species. In this study, a GH11 enzyme PphXyn11 from a novel xylan-degrading strain of Paenibacillus physcomitrellae XB was characterized, and five mutants were constructed to try to improve the enzyme's thermostability. The results showed that PphXyn11 was an acidophilic endo-ß-1,4-xylanase with the optimal reaction pH of 3.0-4.0, and it could deconstruct different kinds of xylan substrates efficiently, such as beechwood xylan, wheat arabinoxylan and xylo-oligosaccharides, to produce xylobiose and xylotriose as the main products at the optimal reaction temperature of 40 °C. Improvement of the thermal stability of PphXyn11 using site-directed mutagenesis revealed that three mutants, W33C/N47C, S127C/N174C and S49E, designed by adding the disulfide bonds at the N-terminal, C-terminal and increasing the charged residues on the surface of PphXyn11 respectively, could increase the enzymatic activity and thermal stablility significantly and make the optimal reaction temperature reach 50 °C. Molecular dynamics simulations as well as computed the numbers of salt bridges and hydrogen bonds indicated that the protein structures of these three mutants were more stable than the wild type, which provided theoretical support for their improved thermal stability. Certainly, further research is necessary to improve the enzymatic characteristics of PphXyn11 to achieve the bioconversion of hemicellulosic biomass on an applicable scale.


Asunto(s)
Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Paenibacillus , Paenibacillus/enzimología , Paenibacillus/genética , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Xilanos/metabolismo , Xilanos/química , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura , Especificidad por Sustrato
9.
Environ Res ; 252(Pt 3): 119009, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679277

RESUMEN

Fine particulate matter (PM2.5) harms human health and hinders normal human life. Considering the serious complexity and obvious regional characteristics of PM2.5 pollution, it is urgent to fill in the comprehensive overview of regional characteristics and interannual evolution of PM2.5. This review studied the PM2.5 pollution in six typical areas between 2014 and 2022 based on the data published by the Chinese government and nearly 120 relevant literature. We analyzed and compared the characteristics of interannual and quarterly changes of PM2.5 concentration. The Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) made remarkable progress in improving PM2.5 pollution, while Fenwei Plain (FWP), Sichuan Basin (SCB) and Northeast Plain (NEP) were slightly inferior mainly due to the relatively lower level of economic development. It was found that the annual average PM2.5 concentration change versus year curves in the three areas with better pollution control conditions can be merged into a smooth curve. Importantly, this can be fitted for the accurate evaluation of each area and provide reliable prediction of its future evolution. In addition, we analyzed the factors affecting the PM2.5 in each area and summarize the causes of air pollution in China. They included primary emission, secondary generation, regional transmission, as well as unfavorable air dispersion conditions. We also suggested that the PM2.5 pollution control should target specific industries and periods, and further research need to be carried out on the process of secondary production. The results provided useful assistance such as effect prediction and strategy guidance for PM2.5 pollution control in Chinese backward areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , China , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Mejoramiento de la Calidad , Tamaño de la Partícula
10.
Nat Commun ; 15(1): 3299, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632245

RESUMEN

Improving the absorption of electromagnetic waves at low-frequency bands (2-8 GHz) is crucial for the increasing electromagnetic (EM) pollution brought about by the innovation of the fifth generation (5G) communication technology. However, the poor impedance matching and intrinsic attenuation of material in low-frequency bands hinders the development of low-frequency electromagnetic wave absorbing (EMWA) materials. Here we propose an interface-induced dual-pinning mechanism and establish a magnetoelectric bias interface by constructing bilayer core-shell structures of NiFe2O4 (NFO)@BiFeO3 (BFO)@polypyrrole (PPy). Such heterogeneous interface could induce distinct magnetic pinning of the magnetic moment in the ferromagnetic NFO and dielectric pinning of the dipole rotation in PPy. The establishment of the dual-pinning effect resulted in optimized impedance and enhanced attenuation at low-frequency bands, leading to better EMWA performance. The minimum reflection loss (RLmin) at thickness of 4.43 mm reaches -65.30 dB (the optimal absorption efficiency of 99.99997%), and the effective absorption bandwidth (EAB) can almost cover C-band (4.72 ~ 7.04 GHz) with low filling of 15.0 wt.%. This work proposes a mechanism to optimize low-frequency impedance matching with electromagnetic wave (EMW) loss and pave an avenue for the research of high-performance low-frequency absorbers.

11.
Opt Lett ; 49(8): 2053-2056, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621074

RESUMEN

Plasmonic nanosensors and the dynamic control of light fields are of the utmost significance in the field of micro- and nano-optics. Here, our study successfully demonstrates a plasmonic nanosensor in a compact coupled resonator system and obtains the pressure-induced transparency phenomenon for the first time to our knowledge. The proposed structure consists of a groove and slot cavity coupled in the metal-insulator-metal waveguide, whose mechanical and optical characteristics are investigated in detail using the finite element method. Simulation results show that we construct a quantitative relationship among the resonator deformation quantity, the applied pressure variation, and the resonant wavelength offset by combining the mechanical and optical properties of the proposed system. The physical features contribute to highly efficient plasmonic nanosensors for refractive index and optical pressure sensing with sensitivity of 1800 nm/RIU and 7.4 nm/MPa, respectively. Furthermore, the light waves are coupled to each other in the resonators, which are detuned due to the presence of pressure, resulting in the pressure-induced transparency phenomenon. It is noteworthy to emphasize that, unlike previously published works, our numerical results take structural deformation-induced changes in optical properties into account, making them trustworthy and practical. The proposed structure introduces a novel, to the best of our knowledge, approach for the dynamic control of light fields and has special properties that can be utilized for the realization of various integrated components.

12.
Anal Chem ; 96(16): 6195-6201, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607805

RESUMEN

Single particle collision is an important tool for size analysis at the individual particle level; however, due to complex dynamic behaviors of nanoparticles on the surface of an electrode, the accuracy of size discrimination is limited. A silver (Ag) nanoparticle (NP) was chosen as the research target, and the dynamic behavior of Ag NPs was simplified by enhancing adsorption between Ag NP and Au ultramicroelectrode (UME) in alkaline media. Immediately after, accurate dynamic and thermodynamic information on single Ag NP was accurately extracted from collision events, including current intensity, transferred charge, and duration time. On the basis that there were differences between parameters of different-sized Ag NPs, multiparameter size discrimination was proposed, which improved the accuracy compared to single-parameter discrimination. More intriguingly, multiparameter analysis was combined with artificial intelligence, a tool adept at processing multidimensional data, for the first time. Finally, artificial intelligence-assisted multiparameter size discrimination was successfully used to intelligently distinguish mixed Ag NPs, with an optimal accuracy of more than 95%. To sum up, the artificial intelligence-assisted multiparameter method showed an excellent ability to quickly achieve the most accurate size discrimination of nanoparticles at the level of individual particle and provide an effective guidance for the application of nanoparticles.

13.
Pestic Biochem Physiol ; 200: 105836, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582598

RESUMEN

The striped stem borer, Chilo suppressalis (Walker), a notorious pest infesting rice, has evolved a high level of resistance to many commonly used insecticides. In this study, we investigate whether tyrosine hydroxylase (TH), which is required for larval development and cuticle tanning in many insects, could be a potential target for the control of C. suppressalis. We identified and characterized the full-length cDNA (CsTH) of C. suppressalis. The complete open reading frame of CsTH (MW690914) was 1683 bp in length, encoding a protein of 560 amino acids. Within the first to the sixth larval instars, CsTH was high in the first day just after molting, and lower in the ensuing days. From the wandering stage to the adult stage, levels of CSTH began to rise and reached a peak at the pupal stage. These patterns suggested a role for the gene in larval development and larval-pupal cuticle tanning. When we injected dsCsTH or 3-iodotyrosine (3-IT) as a TH inhibitor or fed a larva diet supplemented with 3-IT, there were significant impairments in larval development and larval-pupal cuticle tanning. Adult emergence was severely impaired, and most adults died. These results suggest that CsTH might play a critical role in larval development as well as larval-pupal tanning and immunity in C. suppressalis, and this gene could form a potential novel target for pest control.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Oryza , Animales , Larva/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Pupa , Mariposas Nocturnas/metabolismo , Oryza/metabolismo
14.
Small ; 20(28): e2310795, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501992

RESUMEN

Developing the second near-infrared (NIR-II) photoacoustic (PA) agent is of great interest in bioimaging. Ag2Se quantum dots (QDs) are one kind of potential probe for applications in NIR-II photoacoustic imaging (PAI). However, the surfaces with excess anions of Ag2Se QDs, which increase the probability of nonradiative transitions of excitons benefiting PA imaging, are not conducive to binding electron donor ligands for potential biolabeling and imaging. In this study, Staphylococcus aureus (S. aureus) cells are driven for the biosynthesis of Ag2Se QDs with catalase (CAT). Biosynthesized Ag2Se (bio-Ag2Se-CAT) QDs are produced in Se-enriched environment of S. aureus and have a high Se-rich surface. The photothermal conversion efficiency of bio-Ag2Se-CAT QDs at 808 and 1064 nm is calculated as 75.3% and 51.7%, respectively. Additionally, the PA signal responsiveness of bio-Ag2Se-CAT QDs is ≈10 times that of the commercial PA contrast agent indocyanine green. In particular, the bacterial CAT is naturally attached to bio-Ag2Se-CAT QDs surface, which can effectively relieve tumor hypoxia. The bio-Ag2Se-CAT QDs can relieve heat-initiated oxidative stress while undergoing effective photothermal therapy (PTT). Such biosynthesis method of NIR-II bio-Ag2Se-CAT QDs opens a new avenue for developing multifunctional nanomaterials, showing great promise for PAI, hypoxia alleviation, and PTT.


Asunto(s)
Catalasa , Técnicas Fotoacústicas , Terapia Fototérmica , Puntos Cuánticos , Staphylococcus aureus , Puntos Cuánticos/química , Técnicas Fotoacústicas/métodos , Catalasa/metabolismo , Catalasa/química , Animales , Compuestos de Plata/química , Humanos , Rayos Infrarrojos , Ratones , Selenio/química
15.
Int J Biol Macromol ; 267(Pt 1): 131201, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554921

RESUMEN

As a promising green and sustainable coating material, gum was extracted from durian seed to produce eutectogel, which the properties were tunable using natural deep eutectic solvent (NADES). Ten different eutectogels were successfully synthesized using durian seed gum (DSG) and xanthan gum (XG) gelators at different composition (5, 10, 15 %) to gel choline chloride-glucose (1:1), choline chloride-fructose (1:2) and betaine-glucose-water (1:1:1) NADESs. Results revealed that eutectogel was non-Newtonian and weak gel material with excellent thermostability up to 200 °C. When the gum content increased, the resulted eutectogel showed higher viscosity, yield stress, hardness, gumminess, adhesiveness, and weight holding capacity. In overall, choline chloride-fructose (1:2) NADES and 10 % of DSG formed an excellent eutectogel which remained stable and compatible upon 12 weeks of storage. It displayed superior viscoelastic, texture, gases and moisture barrier properties which were beneficial for food coating application. This eutectogel was able to extend the shelf life of fresh-cut apples during storage with lower weight loss and higher total phenolic content (TPC). The potential future of this well-characterized tunable DSG-derived eutectogel includes, but not limited to, food and pharmaceutical industries, smart sensing, flexible wearable electronics, water purification, supercapacitors and batteries.


Asunto(s)
Bombacaceae , Conservación de Alimentos , Geles , Gomas de Plantas , Reología , Semillas , Gomas de Plantas/química , Semillas/química , Geles/química , Bombacaceae/química , Conservación de Alimentos/métodos , Viscosidad , Polisacáridos Bacterianos/química , Temperatura
16.
Phytomedicine ; 128: 155355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555773

RESUMEN

BACKGROUND: Five Polyporales mushrooms, namely Amauroderma rugosum, Ganoderma lucidum, G. resinaceum, G. sinense and Trametes versicolor, are commonly used in China for managing insomnia. However, their active components for this application are not fully understood, restricting their universal recognition. PURPOSE: In this study, we aimed to identify sedative-hypnotic compounds shared by these five Polyporales mushrooms. STUDY DESIGN AND METHODS: A UPLC-Q-TOF-MS/MS-based untargeted metabolomics, including OPLS-DA (orthogonal projection of potential structure discriminant analysis) and OPLS (orthogonal projections to latent structures) analysis together with mouse assays, were used to identify the main sedative-hypnotic compounds shared by the five Polyporales mushrooms. A pentobarbital sodium-induced sleeping model was used to investigate the sedative-hypnotic effects of the five mushrooms and their sedative-hypnotic compounds. RESULTS: Ninety-two shared compounds in the five mushrooms were identified. Mouse assays showed that these mushrooms exerted sedative-hypnotic effects, with different potencies. Six triterpenes [four ganoderic acids (B, C1, F and H) and two ganoderenic acids (A and D)] were found to be the main sedative-hypnotic compounds shared by the five mushrooms. CONCLUSION: We for the first time found that these six triterpenes contribute to the sedative-hypnotic ability of the five mushrooms. Our novel findings provide pharmacological and chemical justifications for the use of the five medicinal mushrooms in managing insomnia.


Asunto(s)
Hipnóticos y Sedantes , Metabolómica , Polyporales , Espectrometría de Masas en Tándem , Animales , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/química , Ratones , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Polyporales/química , Masculino , Agaricales/química , Sueño/efectos de los fármacos , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Reishi/química
17.
Front Microbiol ; 15: 1287637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426052

RESUMEN

Background: Currently, there has been observed a significant alteration in the composition of the gut microbiome (GM) and serum metabolites in patients with psoriatic arthritis (PsA) compared to healthy individuals. However, previous observational studies have shown inconsistent results regarding the alteration of gut microbiota/metabolites. In order to shed light on this matter, we utilized Mendelian randomization to determine the causal effect of GM/metabolites on PsA. Methods: We retrieved summary-level data of GM taxa/metabolites and PsA from publicly available GWAS statistics. Causal relationships between GM/metabolites and PsA were determined using a two-sample MR analysis, with the IVW approach serving as the primary analysis method. To ensure the robustness of our findings, we conducted sensitivity analyses, multivariable MR analysis (MVMR), and additional analysis including replication verification analysis, LDSC regression, and Steiger test analysis. Furthermore, we investigated reverse causality through a reverse MR analysis. Finally, we conducted an analysis of expression quantitative trait loci (eQTLs) involved in the metabolic pathway to explore potential molecular mechanisms of metabolism. Results: Our findings reveal that eight GM taxa and twenty-three serum metabolites are causally related to PsA (P < 0.05). Notably, a higher relative abundance of Family Rikenellaceae (ORIVW: 0.622, 95% CI: 0.438-0.883, FDR = 0.045) and elevated serum levels of X-11538 (ORIVW: 0.442, 95% CI: 0.250-0.781, FDR = 0.046) maintain significant causal associations with a reduced risk of PsA, even after adjusting for multiple testing correction and conducting MVMR analysis. These findings suggest that Family Rikenellaceae and X-11538 may have protective effects against PsA. Our sensitivity analysis and additional analysis revealed no significant horizontal pleiotropy, reverse causality, or heterogeneity. The functional enrichment analysis revealed that the eQTLs examined were primarily associated with glycerolipid metabolism and the expression of key metabolic factors influenced by bacterial infections (Vibrio cholerae and Helicobacter pylori) as well as the mTOR signaling pathway. Conclusion: In conclusion, our study demonstrates that Family Rikenellaceae and X-11538 exhibit a strong and negative causal relationship with PsA. These particular GM taxa and metabolites have the potential to serve as innovative biomarkers, offering valuable insights into the treatment and prevention of PsA. Moreover, bacterial infections and mTOR-mediated activation of metabolic factors may play an important role in this process.

18.
World J Clin Cases ; 12(6): 1084-1093, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38464916

RESUMEN

BACKGROUND: Parental behaviors are key in shaping children's psychological and behavioral development, crucial for early identification and prevention of mental health issues, reducing psychological trauma in childhood. AIM: To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children. METHODS: From October 2017 to May 2018, 7 kindergartens in Ma'anshan City were selected to conduct a parent self-filled questionnaire - Health Development Survey of Preschool Children. Children's Strength and Difficulties Questionnaire (Parent Version) was applied to measures the children's behavioral and emotional performance. Parenting behavior was evaluated using the Parental Behavior Inventory. Binomial logistic regression model was used to analyze the association between the detection rate of preschool children's behavior and emotional problems and their parenting behaviors. RESULTS: High level of parental support/participation was negatively correlated with conduct problems, abnormal hyperactivity, abnormal total difficulty scores and abnormal prosocial behavior problems. High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children. High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms, abnormal conduct problems, abnormal hyperactivity, abnormal peer interaction, and abnormal total difficulty scores in children (all P < 0.05). Moreover, paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors (all P > 0.05), after calculating ratio of odds ratio values. CONCLUSION: Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children. Overall, the more supportive or involved the parents are, the fewer behavioral and emotional problems the children experience; conversely, the more hostile or controlling the parents are, the more behavioral and emotional problems the children face. Moreover, the impact of fathers' parenting behaviors on preschool children's behavior and emotions is no less significant than that of mothers' parenting behaviors.

19.
Environ Res ; 250: 118523, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382664

RESUMEN

BACKGROUND: Most previous research on the environmental epidemiology of childhood atopic eczema, rhinitis and wheeze is limited in the scope of risk factors studied. Our study adopted a machine learning approach to explore the role of the exposome starting already in the preconception phase. METHODS: We performed a combined analysis of two multi-ethnic Asian birth cohorts, the Growing Up in Singapore Towards healthy Outcomes (GUSTO) and the Singapore PREconception Study of long Term maternal and child Outcomes (S-PRESTO) cohorts. Interviewer-administered questionnaires were used to collect information on demography, lifestyle and childhood atopic eczema, rhinitis and wheeze development. Data training was performed using XGBoost, genetic algorithm and logistic regression models, and the top variables with the highest importance were identified. Additive explanation values were identified and inputted into a final multiple logistic regression model. Generalised structural equation modelling with maternal and child blood micronutrients, metabolites and cytokines was performed to explain possible mechanisms. RESULTS: The final study population included 1151 mother-child pairs. Our findings suggest that these childhood diseases are likely programmed in utero by the preconception and pregnancy exposomes through inflammatory pathways. We identified preconception alcohol consumption and maternal depressive symptoms during pregnancy as key modifiable maternal environmental exposures that increased eczema and rhinitis risk. Our mechanistic model suggested that higher maternal blood neopterin and child blood dimethylglycine protected against early childhood wheeze. After birth, early infection was a key driver of atopic eczema and rhinitis development. CONCLUSION: Preconception and antenatal exposomes can programme atopic eczema, rhinitis and wheeze development in utero. Reducing maternal alcohol consumption during preconception and supporting maternal mental health during pregnancy may prevent atopic eczema and rhinitis by promoting an optimal antenatal environment. Our findings suggest a need to include preconception environmental exposures in future research to counter the earliest precursors of disease development in children.


Asunto(s)
Dermatitis Atópica , Exposoma , Aprendizaje Automático , Ruidos Respiratorios , Rinitis , Humanos , Dermatitis Atópica/epidemiología , Femenino , Rinitis/epidemiología , Masculino , Preescolar , Singapur/epidemiología , Embarazo , Exposición Materna , Niño , Adulto , Efectos Tardíos de la Exposición Prenatal/epidemiología , Lactante , Estudios de Cohortes
20.
Transl Pediatr ; 13(1): 110-118, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38323173

RESUMEN

Background: Neurokinin-1 receptor antagonists have improved the management of chemotherapy-induced nausea and vomiting (CINV), but to date there has been no prospective comparison between oral aprepitant and intravenous fosaprepitant in pediatric oncology patients. Methods: Our study was a double-parallel study, and the distribution ratio was 1:1. Children aged 2-12 years who were undergoing moderate or highly emetogenic chemotherapy (MEC or HEC) were randomly assigned to receive ondansetron and dexamethasone combined with either a single dose of intravenous fosaprepitant (arm A), or 3 days of oral aprepitant (arm B). The primary outcome measure was the rate of complete response (CR) of CINV within the acute phase, defined as from the start through 24 hours after the last chemotherapy dose. Response during the delayed phase, overall response, and use of rescue antiemetics were also assessed. Results: We prospectively evaluated 108 eligible patients, including 55 receiving fosaprepitant. Study observations were made during a single cycle for each patient. The occurrence of CR in the acute phase was statistically higher for patients receiving fosaprepitant (95% vs. 79%, P=0.018<0.05). Modest differences were seen in CR rates during the delayed phase (71% vs. 66%, P=0.586), and overall response rate (69% vs. 57%, P=0.179). The use of antiemetic rescue medicines was similar between arms A (11%) and B (7%). Conclusions: Fosaprepitant produced more CRs of CINV in the acute phase than did aprepitant, although there were no statistical differences in delayed phase response, overall response, or use of rescue antiemetics. This study confirms the safety, efficacy, and potential advantages of fosaprepitant in reducing CINV in pediatric oncology patients. Trial Registration: ClinicalTrials.gov identifier: NCT04873284.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...