Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-434764

RESUMEN

The global emergence of SARS-CoV-2 has triggered numerous efforts to develop therapeutic options for COVID-19 pandemic. The main protease of SARS-CoV-2 (Mpro), which is a critical enzyme for transcription and replication of SARS-CoV-2, is a key target for therapeutic development against COVID-19. An organoselenium drug called ebselen has recently been demonstrated to have strong inhibition against Mpro and antiviral activity but its molecular mode of action is unknown preventing further development. We have examined the binding modes of ebselen and its derivative in Mpro via high resolution co-crystallography and investigated their chemical reactivity via mass spectrometry. Stronger Mpro inhibition than ebselen and potent ability to rescue infected cells were observed for a number of ebselen derivatives. A free selenium atom bound with cysteine 145 of Mpro catalytic dyad has been revealed by crystallographic studies of Mpro with ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent adduct, formation of a phenolic by-product is confirmed by mass spectrometry. The target engagement of these compounds with an unprecedented mechanism of SARS-CoV-2 Mpro inhibition suggests wider therapeutic applications of organo-selenium compounds in SARS-CoV-2 and other zoonotic beta-corona viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA