Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958669

RESUMEN

N-methyl-D-aspartate (NMDA) receptors are inhibited by many amidine and guanidine compounds. In this work, we studied the mechanisms of their inhibition by sepimostat-an amidine-containing serine protease inhibitor with neuroprotective properties. Sepimostat inhibited native NMDA receptors in rat hippocampal CA1 pyramidal neurons with IC50 of 3.5 ± 0.3 µM at -80 mV holding voltage. It demonstrated complex voltage dependence with voltage-independent and voltage-dependent components, suggesting the presence of shallow and deep binding sites. At -80 mV holding voltage, the voltage-dependent component dominates, and we observed pronounced tail currents and overshoots evidencing a "foot-in-the-door" open channel block. At depolarized voltages, the voltage-independent inhibition by sepimostat was significantly attenuated by the increase of agonist concentration. However, the voltage-independent inhibition was non-competitive. We further compared the mechanisms of the action of sepimostat with those of structurally-related amidine and guanidine compounds-nafamostat, gabexate, furamidine, pentamidine, diminazene, and DAPI-investigated previously. The action of all these compounds can be described by the two-component mechanism. All compounds demonstrated similar affinity to the shallow site, which is responsible for the voltage-independent inhibition, with binding constants in the range of 3-30 µM. In contrast, affinities to the deep site differed dramatically, with nafamostat, furamidine, and pentamidine being much more active.


Asunto(s)
Pentamidina , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Pentamidina/metabolismo , Guanidinas/farmacología , Guanidinas/metabolismo , Hipocampo/metabolismo , Células Cultivadas , N-Metilaspartato/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628802

RESUMEN

Febrile seizures (FSs) are a relatively common early-life condition that can cause CNS developmental disorders, but the specific mechanisms of action of FS are poorly understood. In this work, we used hyperthermia-induced FS in 10-day-old rats. We demonstrated that the efficiency of glutamatergic synaptic transmission decreased rapidly after FS by recording local field potentials. This effect was transient, and after two days there were no differences between control and post-FS groups. During early ontogeny, the proportion of calcium-permeable (CP)-AMPA receptors in the synapses of the principal cortical and hippocampal neurons is high. Therefore, rapid internalization of CP-AMPA receptors may be one of the mechanisms underlying this phenomenon. Using the whole-cell patch-clamp method and the selective CP-AMPA receptor blocker IEM-1460, we tested whether the proportion of CP-AMPA receptors changed. We have demonstrated that FS rapidly reduces synaptic CP-AMPA receptors in both the hippocampus and the entorhinal cortex. This process was accompanied by a sharp decrease in the calcium permeability of the membrane of principal neurons, which we revealed in experiments with kainate-induced cobalt uptake. Our experiments show that FSs cause rapid changes in the function of the glutamatergic system, which may have compensatory effects that prevent excessive excitotoxicity and neuronal death.


Asunto(s)
Corteza Entorrinal , Convulsiones Febriles , Animales , Ratas , Calcio , Receptores AMPA , Hipocampo , Calcio de la Dieta , Sinapsis , Neuronas
3.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629153

RESUMEN

Proton-gated channels of the ASIC family are widely distributed in central neurons, suggesting their role in common neurophysiological functions. They are involved in glutamatergic neurotransmission and synaptic plasticity; however, the exact function of these channels remains unclear. One problem is that acidification of the synaptic cleft due to the acidic content of synaptic vesicles has opposite effects on ionotropic glutamate receptors and ASICs. Thus, the pH values required to activate ASICs strongly inhibit AMPA receptors and almost completely inhibit NMDA receptors. This, in turn, suggests that ASICs can provide compensation for post-synaptic responses in the case of significant acidifications. We tested this hypothesis by patch-clamp recordings of rat brain neuron responses to acidifications and glutamate receptor agonists at different pH values. Hippocampal pyramidal neurons have much lower ASICs than glutamate receptor responses, whereas striatal interneurons show the opposite ratio. Cortical pyramidal neurons and hippocampal interneurons show similar amplitudes in their responses to acidification and glutamate. Consequently, the total response to glutamate agonists at different pH levels remains rather stable up to pH 6.2. Besides these pH effects, the relationship between the responses mediated by glutamate receptors and ASICs depends on the presence of Mg2+ and the membrane voltage. Together, these factors create a complex picture that provides a framework for understanding the role of ASICs in synaptic transmission and synaptic plasticity.


Asunto(s)
Sinapsis , Vesículas Sinápticas , Animales , Ratas , Transmisión Sináptica , Cuerpo Estriado , Agonistas de Aminoácidos Excitadores , Ácido Glutámico
4.
Eur J Pharmacol ; 938: 175394, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36403685

RESUMEN

Acid-sensing ion channels (ASICs) are blocked by many cationic compounds. Mechanisms of action, which may include pore block, modulation of activation and desensitization, need systematic analysis to allow predictable design of new potent and selective drugs. In this work, we studied the action of the serine protease inhibitors nafamostat, sepimostat, gabexate and camostat, on native ASICs in rat giant striatal interneurons and recombinant ASIC1a and ASIC2a channels, and compared it to that of well-known small molecule ASIC blocker diminazene. All these compounds have positively charged amidine and/or guanidine groups in their structure. Nafamostat, sepimostat and diminazene inhibited pH 6.5-induced currents in rat striatal interneurons at -80 mV holding voltage with IC50 values of 0.78 ± 0.12 µM, 2.4 ± 0.3 µM and 0.40 ± 0.09 µM, respectively, whereas camostat and gabexate were practically ineffective. The inhibition by nafamostat, sepimostat and diminazene was voltage-dependent evidencing binding in the channel pore. They were not trapped in the closed channels, suggesting "foot-in-the-door" mechanism of action. The inhibitory activity of nafamostat, sepimostat and diminazene was similar in experiments on native ASICs and recombinant ASIC1a channels, while all of them were drastically less active against ASIC2a channels. According to our molecular modeling, three active compounds bind in the channel pore between Glu 433 and Ala 444 in a similar way. In view of the relative safety of nafamostat for clinical use in humans, it can be considered as a potential candidate for the treatment of pathophysiological conditions linked to ASICs disfunction, including inflammatory pain and ischemic stroke.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Gabexato , Animales , Ratas , Canales Iónicos Sensibles al Ácido/metabolismo , Diminazeno/farmacología , Guanidinas/farmacología , Concentración de Iones de Hidrógeno
5.
RSC Med Chem ; 13(7): 822-830, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35923717

RESUMEN

NMDA (N-methyl-d-aspartate) receptor antagonists are promising tools for the treatment of a wide variety of central nervous system impairments including major depressive disorder. We present here the activity optimization process of a biphenyl-based NMDA negative allosteric modulator (NAM) guided by free energy calculations, which led to a 100 times activity improvement (IC50 = 50 nM) compared to a hit compound identified in virtual screening. Preliminary calculation results suggest a low affinity for the human ether-a-go-go-related gene ion channel (hERG), a high affinity for which was earlier one of the main obstacles for the development of first-generation NMDA-receptor negative allosteric modulators. The docking study and the molecular dynamics calculations suggest a completely different binding mode (ifenprodil-like) compared to another biaryl-based NMDA NAM EVT-101.

6.
Eur J Pharmacol ; 919: 174795, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35122868

RESUMEN

N-methyl-D-aspartate (NMDA) receptors are affected by many pharmaceuticals. In this work, we studied the action of the serine protease inhibitors nafamostat, gabexate and camostat, and an antiprotozoal compound, furamidine, on native NMDA receptors in rat hippocampal pyramidal neurons. Nafamostat, furamidine and gabexate inhibited these receptors with IC50 values of 0.20 ± 0.04, 0.64 ± 0.13 and 16 ± 3 µM, respectively, whereas camostat was ineffective. Nafamostat and furamidine showed voltage-dependent inhibition, while gabexate showed practically voltage-independent inhibition. Nafamostat and furamidine demonstrated tail currents, implying a 'foot-in-the-door' mechanism of action; gabexate did not demonstrate any signs of 'foot-in-the-door' or trapping channel block. Gabexate action was also not competitive, suggesting allosteric inhibition of NMDA receptors. Furamidine and nafamostat are structurally similar to the previously studied diminazene and all three demonstrated a 'foot-in-the-door' mechanism. They have a rather rigid, elongated structures and cannot fold into more compact forms. By contrast, the gabexate molecule can fold, but its folded structure differs drastically from that of typical NMDA receptor blockers, in agreement with its voltage-independent inhibition. These findings provide a better understanding of the structural determinants of NMDA receptor antagonism, while also supporting the potential clinical repurposing of these drugs as neuroprotectors for glaucoma and other neurodegenerative diseases.


Asunto(s)
Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Inhibidores de Serina Proteinasa/farmacología , Animales , Benzamidinas/farmacología , Benzamidinas/uso terapéutico , Reposicionamiento de Medicamentos , Ésteres/farmacología , Ésteres/uso terapéutico , Gabexato/farmacología , Gabexato/uso terapéutico , Guanidinas/farmacología , Guanidinas/uso terapéutico , Hipocampo/efectos de los fármacos , Concentración 50 Inhibidora , Masculino , Modelos Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Inhibidores de Serina Proteinasa/uso terapéutico
7.
Eur J Neurosci ; 51(7): 1573-1582, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31605636

RESUMEN

Pentamidine, diminazene and 4',6-diamidino-2-phenylindole (DAPI) are antiprotozoal diarylamidine compounds. In the present work, we have studied their action on native N-methyl-D-aspartate (NMDA) receptors in rat hippocampal pyramidal neurons. All three compounds inhibited NMDA receptors at -80 mV holding voltage with IC50 of 0.41 ± 0.08, 13 ± 3 and 3.1 ± 0.6 µM, respectively. The inhibition by pentamidine was strongly voltage-dependent, while that of DAPI was practically voltage-independent. Inhibition by diminazene had both voltage-dependent and voltage-independent components. Diminazene and DAPI demonstrated tail currents and overshoots suggesting "foot-in-the-door" mechanism of action. In contrast, pentamidine was partially trapped in the closed NMDA receptor channels. Such difference in the mechanism of action can be explained by the difference in the 3D structure of compounds. In the pentamidine molecule, two benzamidine groups are connected with a flexible linker, which allows the molecule to fold up and fit in the cavity of a closed NMDA receptor channel. Diminazene and DAPI, in contrast, have an extended form and could not be trapped.


Asunto(s)
Ácido Aspártico , Benzamidinas , Receptores de N-Metil-D-Aspartato , Animales , Células Cultivadas , Hipocampo , N-Metilaspartato , Células Piramidales , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...