Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836196

RESUMEN

The quantitative description of growth rings is yet incomplete, including the functional division into earlywood and latewood. Methods developed to date, such as the Mork criterion for conifers, can be biased and arbitrary depending on species and growth conditions. We proposed the use of modeling of the statistical distribution of tracheids to determine a universal criterion applicable to all conifer species. Thisstudy was based on 50-year anatomical measurements of Pinus sylvestris L., Pinus sibirica Du Tour, and Picea obovata Ledeb. near the upper tree line in the Western Sayan Mountains (South Siberia). Statistical distributions of the cell wall thickness (CWT)-to-radial-diameter (D) ratio and its slope were investigated for raw and standardized data (divided by the mean). The bimodal distribution of the slope for standardized CWT and D was modeled with beta distributions for earlywood and latewood tracheids and a generalized normal distribution for transition wood to account for the gradual shift in cell traits. The modelcan describe with high accuracy the growth ring structure for species characterized by various proportions of latewood, histometric traits, and gradual or abrupt transition. The proportion of two (or three, including transition wood) zones in the modeled distribution is proposed as a desired criterion.

2.
Biology (Basel) ; 12(4)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37106804

RESUMEN

The forests of Central Asia are biodiversity hotspots at risk from rapid climate change, but they are understudied in terms of the climate-growth relationships of trees. This classical dendroclimatic case study was performed for six conifer forest stands near their semiarid boundaries across Kazakhstan: (1-3) Pinus sylvestris L., temperate forest steppes; (4-5) Picea schrenkiana Fisch. & C.A. Mey, foothills, the Western Tien Shan, southeast; (6) Juniperus seravschanica Kom., montane zone, the Western Tien Shan, southern subtropics. Due to large distances, correlations between local tree-ring width (TRW) chronologies are significant only within species (pine, 0.19-0.50; spruce, 0.55). The most stable climatic response is negative correlations of TRW with maximum temperatures of the previous (from -0.37 to -0.50) and current (from -0.17 to -0.44) growing season. The strength of the positive response to annual precipitation (0.10-0.48) and Standardized Precipitation Evapotranspiration Index (0.15-0.49) depends on local aridity. The timeframe of climatic responses shifts to earlier months north-to-south. For years with maximum and minimum TRW, differences in seasonal maximal temperatures (by ~1-3 °C) and precipitation (by ~12-83%) were also found. Heat stress being the primary factor limiting conifer growth across Kazakhstan, we suggest experiments there on heat protection measures in plantations and for urban trees, alongside broadening the coverage of the dendroclimatic net with accents on the impact of habitat conditions and climate-induced long-term growth dynamics.

3.
Front Plant Sci ; 12: 719796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671371

RESUMEN

Dendroclimatic research offers insight into tree growth-climate response as a solution to the forward problem and provides reconstructions of climatic variables as products of the reverse problem. Methodological developments in dendroclimatology have led to the inclusion of a variety of tree growth parameters in this field. Tree-ring traits developed during short time intervals of a growing season can potentially provide a finer temporal scale of both dendroclimatic applications and offer a better understanding of the mechanisms of tree growth reaction to climatic variations. Furthermore, the transition from classical dendroclimatic studies based on a single integral variable (tree-ring width) to the modern multitude of quantitative variables (e.g., wood anatomical structure) adds a lot of complexity, which mainly arises from intrinsic feedbacks between wood traits and muddles seasonality of registered climatic signal. This study utilized life-long wood anatomical measurements of 150- to 280-year-old trees of Pinus sylvestris L. growing in a moisture-sensitive habitat of the forest-steppe of Southern Siberia (Russia) to investigate and eliminate legacy effect from cell production in tracheid traits. Anatomical parameters were calculated to describe the results of the three main subsequent stages of conifer xylem tracheid development, namely, cell number per radial file in the ring, mean and maximum cell radial diameter, and mean and maximum cell-wall thickness. Although tree-ring width was almost directly proportional to cell number, non-linear relationships with cell number were revealed in tracheid measurements. They exhibited a stronger relationship in the areas of narrow rings and stable anatomical structure in wider rings. The exponential models proposed in this study demonstrated these relationships in numerical terms with morphometric meaning. The ratio of anatomical measurements to their modeled values was used to develop long-term anatomical chronologies, which proved to retain information about climatic fluctuations independent of tree-ring width (cell number), despite decreased common signal.

4.
PLoS One ; 15(5): e0233106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32437374

RESUMEN

In the conifer tree rings, each tracheid goes through three phases of differentiation before becoming an element of the stem water-conducting structure: division, extension, and cell wall thickening. These phases are long-lasting and separated temporally, especially cell wall thickening. Despite the numerous lines of evidence that external conditions affect the rate of growth processes and the final anatomical dimensions during the respective phases of tracheid differentiation, the influence of the environment on anatomical dimensions during the cell division phase (cambial activity) has not yet been experimentally confirmed. In this communication, we provide indirect evidence of such an effect through observations of the small fluctuations in the latewood cell wall thickness of rapidly growing tree rings, which exhibit a high cell production rate (more than 0.4 cells per day on average). Such small fluctuations in the cell wall thickness cannot be driven by variations in external factors during the secondary wall deposition phase, since this phase overlaps for several tens of latewood cells in the rings of fast-growing trees due to its long duration.


Asunto(s)
Cámbium/metabolismo , Pared Celular/metabolismo , Picea/metabolismo , Xilema/metabolismo , Cámbium/citología , Picea/citología , Xilema/citología
5.
Int J Biometeorol ; 64(3): 333-344, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31691013

RESUMEN

The roles of slope orientation and elevational temperature gradient were investigated for Scots pine (Pinus sylvestris L.) growth in the middle of its growth range, where these factors can significantly modulate microclimate and thus plant growth. We assumed that slope orientation causes more complex and severe effects than elevation because it influences all three main factors of plant growth: light, heat, and moisture. In addition to the total ring width, the earlywood and latewood width and latewood ratio were considered variables that contain information about tree ring growth during the season and wood structure over all tree life span on three sampling sites at different elevations and opposite slopes. Despite the observed dependence of pine growth rate on temperature and solar radiation, the mean latewood ratio is stable and similar between all sampling sites, being presumably defined by the genotype of individual trees. The seasonality of the climatic response of tree growth is bound to spatiotemporal variation of the vegetative season timing due to the elevational temperature lapse and local warming. However, its direction is primarily defined by slope orientation, where southern slope is moisture-limited, even at adjacent sites, and divergent climatic reactions of earlywood (weak moisture-limited in the last decades) and latewood growth (temperature-limited) were revealed on the northern slope.


Asunto(s)
Pinus sylvestris , Pinus , Temperatura , Árboles , Madera
6.
Int J Biometeorol ; 62(6): 939-948, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29289995

RESUMEN

We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.


Asunto(s)
Avena/crecimiento & desarrollo , Clima , Hordeum/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Modelos Teóricos , Lluvia , Siberia , Temperatura
7.
Int J Biometeorol ; 62(5): 861-871, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29247369

RESUMEN

Interrelations of the yield variability of the main crops (wheat, barley, and oats) with hydrothermal regime and growth of conifer trees (Pinus sylvestris and Larix sibirica) in forest-steppes were investigated in Khakassia, South Siberia. An attempt has been made to understand the role and mechanisms of climatic impact on plants productivity. It was found that amongst variables describing moisture supply, wetness index had maximum impact. Strength of climatic response and correlations with tree growth are different for rain-fed and irrigated crops yield. Separated high-frequency variability components of yield and tree-ring width have more pronounced relationships between each other and with climatic variables than their chronologies per se. Corresponding low-frequency variability components are strongly correlated with maxima observed after 1- to 5-year time shift of tree-ring width. Results of analysis allowed us to develop original approach of crops yield dynamics reconstruction on the base of high-frequency variability component of the growth of pine and low-frequency one of larch.


Asunto(s)
Clima , Productos Agrícolas/crecimiento & desarrollo , Modelos Teóricos , Árboles/crecimiento & desarrollo , Bosques , Siberia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA