Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38932358

RESUMEN

Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), results in significant economic losses to the swine industry in many countries. Vaccination represents the primary strategy to control CSF and the CSFV E2 protein is known as the major protective antigen. However, the E2 protein expressed or presented by different systems elicits distinct immune responses. In this study, we established a stable CHO cell line to express the E2 protein and delivered it using self-assembled ferritin nanoparticles (NPs). Subsequently, we compared the adaptive immune responses induced by the E2-ferritin NPs and the monomeric E2 protein produced by the CHO cells or a baculovirus expression system. The results revealed that the NP-delivered E2 protein elicited higher titers of neutralizing antibodies than did the monomeric E2 protein in pigs. Importantly, only the NP-delivered E2 protein significantly induced CSFV-specific IFN-γ-secreting cells. Furthermore, all the pigs inoculated with the E2-ferritin NPs were completely protected from a lethal CSFV challenge infection. These findings demonstrate the ability of the E2-ferritin NPs to protect pigs against the lethal CSFV challenge by eliciting robust humoral and cellular immune responses.

2.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4759-4772, 2023 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-38147979

RESUMEN

Cell-mediated immune response is an important part of machinery in maintaining the body's homeostasis. After the innate immune system selectively activates the adaptive immune system, the cell-mediated immunity exerts its killing and clearance functions. Therefore, evaluating the level of cell-mediated immune response is crucial in the diagnosis and treatment of cancer, monitoring the immune status after organ transplantation, diagnosing and preventing viral diseases, and evaluating the effectiveness of vaccines and other areas. From the initial overall assessment of the immune effects in vivo to the precise detection of the number and function of multiple immune cells, the evaluation methods of cell-mediated immune response have greatly advanced. However, cell-mediated immune response involves multiple levels in the body, and it's difficult to choose the numerous detection methods available. The article systematically compares the evaluation methods of cell-mediated immune response at four different levels: the organism, the tissue and organ, the immune cells and the immune molecules, with the aim to facilitate the applications of related technologies.


Asunto(s)
Inmunidad Celular , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Inmunidad Innata
3.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2857-2871, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-36002415

RESUMEN

With the development of vaccine research and development technologies, novel vaccines have been widely used in the prevention of various infectious diseases. Due to the excellent safety, novel vaccines have unique advantages in the application of vaccines against virulent pathogens. The major premise of developing novel vaccines is to screen protective antigens. With the development of various omics research, cutting-edge bioinformatics tools for eukaryotes have been well developed, while the much simpler structure of viruses compared with eukaryotic cells corresponds to relatively simple research methods. Strategies for screening protective antigens need to combine the advantages of both bioinformatics methods and traditional molecular biology methods. In this review, the strategies for screening virus protective antigens were discussed from the perspective of host and virus, and a series of bioinformatics tools developed based on eukaryotic cells that may be used for screening protective antigens were listed. This review also summarized the cases of using protective antigens to design novel vaccines, in order to better understand the strategies for screening virus protective antigens and facilitate the research and development of novel vaccines.


Asunto(s)
Vacunas , Vacunas Virales , Antígenos , Antígenos Virales/genética , Biología Computacional , Investigación , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...