Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34947660

RESUMEN

The temperature-dependent photoluminescence (PL) properties of an anti-perovskite [MnBr4]BrCs3 sample in the temperature range of 78-500 K are studied in the present work. This material exhibits unique performance which is different from a typical perovskite. Experiments showed that from room temperature to 78 K, the luminous intensity increased as the temperature decreased. From room temperature to 500 K, the photoluminescence intensity gradually decreased with increasing temperature. Experiments with varying temperatures repeatedly showed that the emission wavelength was very stable. Based on the above-mentioned phenomenon of the changing photoluminescence under different temperatures, the mechanism is deduced from the temperature-dependent characteristics of excitons, and the experimental results are explained on the basis of the types of excitons with different energy levels and different recombination rates involved in the steady-state PL process. The results show that in the measured temperature range of 78-500 K, the steady-state PL of [MnBr4]BrCs3 had three excitons with different energy levels and recombination rates participating. The involved excitons with the highest energy level not only had a high radiative recombination rate, but a high non-radiative recombination rate as well. The excitons at the second-highest energy level had a similar radiative recombination rate to the lowest energy level excitons and a had high non-radiative recombination rate. These excitons made the photoluminescence gradually decrease with increasing temperature. This may be the reason for this material's high photoluminescence efficiency and low electroluminescence efficiency.

2.
J Phys Chem B ; 110(7): 3023-9, 2006 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-16494304

RESUMEN

The chelate phosphine oxide ligand bis(2-(diphenylphosphino)phenyl) ether oxide (DPEPO) was used as a unit neutral ligand to prepare the complex Eu(TTA)(3)(DPEPO) 1 (TTA = 2-thenoyltrifluoroacetonate). Compound 1 has a photoluminescence (PL) quantum yield of 55.3%, which is more than the twice of the PL quantum yield of Eu(TTA)(3)(TPPO)(2) (TPPO = triphenylphosphine oxide). Investigation indicated that DPEPO in 1 has the mezzo first triplet excited energy level (T(1)) between the first singlet excited energy level (S(1)) and T(1) of TTA, which may support one more additional energy transfer routines from the T(1) energy level of DPEPO to that of TTA, and consequently results in the improvement of energy transfer in the Eu(III) complex. DPEPO forms a complex with a more rigid and compact structure that can improve energy transfer between ligands and the center Eu(III) ion, support the higher saturation level by the coordinating ability of the oxygen atom in the ether moiety, and consequently enhance the PL intensity and efficiency of the corresponding Eu(III) complex. The multilayered electroluminescent (EL) device of 1 used as the red dopant exhibited an impressive brightness of 632 cd m(-2) at 25 V. The device had the excellent voltage-independent spectral stability with an emission peak at 615 nm. To the best of our knowledge, this luminescence is the brightest emission among Eu complexes with phosphine oxide ligands. The maximum external quantum yield (eta(ext)) of 2.89% and the maximum current and power efficiency of 4.58 cd A(-1) and 2.05 lm W(-1) were achieved at a low turn-on voltage of 7 V and current density of 0.021 mA cm(-2). These properties demonstrate that the chelate phosphine oxides ligand DPEPO can not only be favorable to form the rigid and compact complex structure and increase the efficiency of devices, but also reduce the ability of the formation of exciplex. DPEPO shows much better performance compared with the ordinary phosphine oxide ligand triphenylphosphine oxide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...