Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 147, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951501

RESUMEN

Arrayed waveguide grating is a versatile and scalable integrated light dispersion device, which has been widely adopted in various applications, including, optical communications and optical sensing. Recently, thin-film lithium niobate emerges as a promising photonic integration platform, due to its ability of shrinking largely the size of typical lithium niobate based optical devices. This would also enable multifunctional photonic integrated chips on a single lithium niobate substrate. However, due to the intrinsic anisotropy of the material, to build an arrayed waveguide grating on X-cut thin-film lithium niobate has never been successful. Here, a universal strategy to design anisotropy-free dispersive components on a uniaxial in-plane anisotropic photonic integration platform is introduced for the first time. This leads to the first implementation of arrayed waveguide gratings on X-cut thin-film lithium niobate with various configurations and high-performances. The best insertion loss of 2.4 dB and crosstalk of -24.1 dB is obtained for the fabricated arrayed waveguide grating devices. Applications of such arrayed waveguide gratings as a wavelength router and in a wavelength-division multiplexed optical transmission system are also demonstrated.

2.
Opt Express ; 32(10): 18044-18054, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858970

RESUMEN

As a combination of direct detection and coherent detection technologies, self-coherent detection has the advantages of low cost and optical field recovery ability. However, most of the self-coherent detection techniques are limited to single sideband (SSB) signals. Recently, carrier-assisted differential detection (CADD) has been proposed to realize complex-valued double sideband (DSB) signals, but it requires a high carrier-to-signal power ratio (CSPR) to mitigate the signal-to-signal beat interference (SSBI). Later, a more cost-effective symmetric CADD (S-CADD) has been proposed while the required CSPR is still high. In order to alleviate the high requirements of CSPR, we propose a scheme based on the joint of digital pre-distortion (DPD) at transmitter and clipping at receiver to further improve the S-CADD system performance. This joint processing can not only solve the problem of non-uniform distribution of subcarrier signal-to-noise ratio (SNR) caused by non-ideal transfer function, but also the error propagation problem caused by enhanced SSBI under low CSPR. After the validation of the 64 Gbaud 16-ary quadrature amplitude modulation (16-QAM) orthogonal frequency division multiplexing (OFDM) signal transmitted over 80 km standard single mode fiber (SSMF), the CSPR required by the proposed scheme to reach the 20% soft decision-forward error correction (SD-FEC) and 7% hard decision-forward error correction (HD-FEC) can be reduced by 1.3 dB and 2.8 dB, respectively, with a comparison of the conventional S-CADD. The results show the potential of the proposed scheme in the short-reach optical transmissions.

3.
Opt Lett ; 49(11): 3218-3221, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824367

RESUMEN

We propose a high-speed multimode fiber short-reach optical interconnect system based on a Kramers-Kronig (KK) field reconstruction with the mode division multiplexing (MDM) and polarization division multiplexing (PDM) technology. In this work, the LP01, LP21a, LP21b, and LP02 modes are selected as independent channels to carry information. The demonstration achieved the 800 Gb/s net data rate per wavelength with a bit-rate-distance-product (BDP) of 8 Tb/s·km. To the best of our knowledge, this is the highest experimental record of a single wavelength BDP over the SMMF with KK detection. In addition, we discuss the system performance after all multiple-input multiple-output (MIMO) and partial MIMO processing and give guidance on the trade-off between system performance and computational resource.

4.
Opt Express ; 29(15): 23517-23523, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614616

RESUMEN

In this study, we report, to the best of our knowledge, the first experimental demonstration of the real-time reception of a 106 Gbps PAM-4 transmission over an 80 km dispersion uncompensated standard single-mode fiber (SSMF) link. In the transmitter, a chromatic dispersion (CD) pre-compensation, aided by an optical IQ modulator, is implemented. The optimization guideline of driver signal amplitudes and bias voltages is proposed to enable optimal CD pre-compensation. In the receiver, a real-time PAM-4 module including simple feed-forward equalization (FFE) is used. After the transmission, the required optical signal-to-noise ratio (OSNR) at a bit error rate (BER) below 3.8 × 10-3 is determined to be 35 dB for 106 Gbps PAM-4 signals. The better BER of 6.9 × 10-4 is achieved successfully compared to the previously reported off-line reception. The demonstration confirms the feasibility of 80 km DCI based on CD pre-compensation under real-time reception.

5.
Opt Express ; 29(16): 24735-24749, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614823

RESUMEN

To combat chromatic dispersion (CD) in intensity modulation and direct detection (IM/DD) systems, three chirp-free demonstrations are experimentally performed with an iterative pre-electronic dispersion compensation (pre-EDC) algorithm at the transmitter end, for 28 GBaud non-return-to-zero on-off keying (NRZ-OOK), 56 GBaud NRZ-OOK and 28 GBaud four-level pulse-amplitude-modulation (PAM-4) signals, over distances of 100 km, 50 km and 40 km of single mode fiber (SMF), respectively. The iterative pre-EDC algorithm is based on the Gerchberg-Saxton (GS) algorithm, which treats the unconstrained phase at the direct detection receiver as a degree of freedom. At the receiver side, only a linear fractionally-spaced (T/2) post-feed-forward equalizer (post-FFE) is employed to combat the residual inter-symbol interference (ISI). Experimental results show that the aforementioned three demonstrations can approach the forward error correction (FEC) bit error rate (BER) threshold of 3.8 × 10-3 with (15 pre-EDC iterations and 5-tap post-FFE), (30 pre-EDC iterations and 15-tap post-FFE), and (10 pre-EDC iterations and 25-tap post-FFE), respectively. The results indicate the applicability of the pre-EDC algorithm in high-capacity IM/DD systems for transmission distances below 100 km of SMF.

6.
Opt Lett ; 42(18): 3537-3540, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28914895

RESUMEN

In this Letter, we demonstrate experimentally for the first time, to the best of our knowledge, discrete ultraviolet (UV) wavelength generation by cascaded intermodal FWM when femtosecond pump pulses at 800 nm are launched into the deeply normal dispersion region of the fundamental guided mode of a multimode photonic crystal fiber (MPCF). For pump pulses at average input powers of Pav=450, 550, and 650 mW, the first anti-Stokes waves are generated at the visible wavelength of 538.1 nm through intermodal phase matching between the fundamental and second-order guided mode of the MPCF. The first anti-Stokes waves generated then serve as the secondary pump for the next intermodal FWM process. The second anti-Stokes waves in the form of the third-order guided mode are generated at the UV wavelength of 375.8 nm. The maximum output power is above 10 mW for Pav=650 mW. We also confirm that the influences of fiber bending and intermodal walk-offs on the cascaded intermodal FWM-based frequency conversion process are negligible.

7.
Sci Rep ; 7(1): 9224, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28835701

RESUMEN

Deep-ultraviolet (UV) second-harmonics (SHs) have important applications in basic physics and applied sciences. However, it still remains challenging to generate deep-UV SHs especially in optical fibers. Here, for the first time, we experimentally demonstrate the deep-UV SH generations (SHGs) by combined degenerate four-wave mixing (FWM) and surface nonlinearity polarization in an in-house designed and fabricated air-silica photonic crystal fiber (PCF). When femtosecond pump pulses with average input power P av of 650 mW and center wavelength λ p of 810, 820, 830, and 840 nm are coupled into the normal dispersion region close to the zero-dispersion wavelength of the fundamental mode of the PCF, the anti-Stokes waves induced by degenerate FWM process are tunable from 669 to 612 nm. Then, they serve as the secondary pump, and deep-UV SHs are generated within the wavelength range of 334.5 to 306 nm as a result of surface nonlinearity polarization at the core-cladding interface of the PCF. The physical mechanism of the SHGs is confirmed by studying the dependences of the output power P SH of the SHs on the PCF length and time. Finally, we also establish a theoretical model to analyze the SHGs.

8.
Opt Express ; 25(15): 17767-17776, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789268

RESUMEN

We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).

9.
Sci Rep ; 7(1): 3814, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28630483

RESUMEN

Parabolic pulses have important applications in both basic and applied sciences, such as high power optical amplification, optical communications, all-optical signal processing, etc. The generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires at telecom (λ ~ 1550 nm) and mid-IR (λ ≥ 2100 nm) wavelengths is demonstrated and analyzed. The self-similar theory of parabolic pulse generation in passive waveguides with increasing nonlinearity is presented. A generalized nonlinear Schrödinger equation is used to describe the coupled dynamics of optical field in the tapered hydrogenated amorphous silicon photonic wires with either decreasing dispersion or increasing nonlinearity. The impacts of length dependent higher-order effects, linear and nonlinear losses including two-photon absorption, and photon-generated free carriers, on the pulse evolutions are characterized. Numerical simulations show that initial Gaussian pulses will evolve into the parabolic pulses in the waveguide taper designed.

10.
Opt Lett ; 42(9): 1644-1647, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28454125

RESUMEN

In this Letter, polarization-dependent intermodal four-wave mixing (FWM) is demonstrated experimentally in a birefringent multimode photonic crystal fiber (BM-PCF) designed and fabricated in-house. Femtosecond pump pulses at wavelengths ∼800 nm polarized along one of the principal axes of the BM-PCF are coupled into a normal dispersion region away from the zero-dispersion wavelengths of the fundamental guided mode of the BM-PCF. Anti-Stokes and Stokes waves are generated in the 2nd guided mode at visible and near-infrared wavelengths, respectively. For pump pulses at an average input power of 500 mW polarized along the slow axis, the conversion efficiencies ηas and ηs of the anti-Stokes and Stokes waves generated at wavelengths 579.7 and 1290.4 nm are 19% and 14%, respectively. For pump pulses polarized along the fast axis, the corresponding ηas and ηs at 530.4 and 1627 nm are 23% and 18%, respectively. We also observed that fiber bending and intermodal walk-off have a small effect on the polarization-dependent intermodal FWM-based frequency conversion process.

11.
Opt Express ; 24(22): 25057-25067, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828445

RESUMEN

In this paper, we experimentally demonstrated an IM/DD short reach transmission system with a total capacity of 608Gbit/s (net capacity of 565.4Gbit/s exclude 7% FEC overhead) employing half-cycle 16QAM Nyquist-SCM signal and 25Gbps EML at O band. Direct detection-faster than Nyquist (DD-FTN) technique was employed to compensate channel impairments. Number of taps of DD-LMS and tap coefficient of post filter in DD-FTN were experimentally studied for different baud rates. Single-lane 152Gbit/s transmission over 10km of SSMF was experimentally demonstrated. Employing a 4-lanes LAN-WDM architecture, a total capacity of 608Gbit/s transmission over 2km was successfully achieved with a receiver sensitivity lower than -4dBm. To the best of authors' knowledge, this is the highest reported baud rate of half-cycle 16QAM Nyquist-SCM signal and the highest bit rate employing IM/DD and 25Gbps EML in a four lanes LAN-WDM architecture for short reach systems in the O band.

12.
Opt Express ; 24(15): 17359-71, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27464183

RESUMEN

Polarization-division-multiplexed (PDM) four-level pulse amplitude modulation (PAM4) with coherent detection is a promising low cost solution for 80 km inter-datacenter transmissions at 100 Gb/s and beyond. In this paper, three modified adaptive equalization algorithms for the PDM-PAM4 optical coherent systems, i.e. signal-phase aid least-mean-square (SP-LMS) algorithm, training multi-modulus algorithm (TMMA) and cascaded four-modulus algorithm (CMMA-4), are proposed and compared. Based on the proposed algorithms, 112 Gb/s PDM-PAM4 transmission over 80 km standard single mode fiber (SSMF) in C-band for a bit error rate (BER) below 3.8e-3 is successfully demonstrated without optical amplifier, chromatic dispersion (CD) pre-compensation and extra carrier recovery operations.

13.
Opt Lett ; 41(11): 2612-5, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27244427

RESUMEN

Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively.

14.
Sci Rep ; 6: 19528, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26777054

RESUMEN

High performance all-optical quantizer based on silicon waveguide is believed to have significant applications in photonic integratable optical communication links, optical interconnection networks, and real-time signal processing systems. In this paper, we propose an integratable all-optical quantizer for on-chip and low power consumption all-optical analog-to-digital converters. The quantization is realized by the strong cross-phase modulation and interference in a silicon-organic hybrid (SOH) slot waveguide based Mach-Zehnder interferometer. By carefully designing the dimension of the SOH waveguide, large nonlinear coefficients up to 16,000 and 18,069 W(-1)/m for the pump and probe signals can be obtained respectively, along with a low pulse walk-off parameter of 66.7 fs/mm, and all-normal dispersion in the wavelength regime considered. Simulation results show that the phase shift of the probe signal can reach 8π at a low pump pulse peak power of 206 mW and propagation length of 5 mm such that a 4-bit all-optical quantizer can be realized. The corresponding signal-to-noise ratio is 23.42 dB and effective number of bit is 3.89-bit.

15.
Opt Express ; 23(15): 19673-80, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367624

RESUMEN

We propose and experimentally demonstrate a fast polarization tracking scheme based on radius-directed linear Kalman filter. It has the advantages of fast convergence and is inherently insensitive to phase noise and frequency offset effects. The scheme is experimentally compared to conventional polarization tracking methods on the polarization rotation angular frequency. The results show that better tracking capability with more than one order of magnitude improvement is obtained in the cases of polarization multiplexed QPSK and 16QAM signals. The influences of the filter tuning parameters on tracking performance are also investigated in detail.

16.
Opt Express ; 23(12): 15971-82, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26193572

RESUMEN

Optical signal-to-noise ratio (OSNR) monitoring is indispensable for ensuring robust and flexible optical networks that provide failure diagnosis, dynamic lightpath provisioning and modulation format adaptation. We propose and experimentally demonstrate a low-cost, modulation-format-independent OSNR monitoring scheme utilizing reduced-complexity coherent receptions, electrical filtering and radio frequency (RF) power measurements. By measuring the RF power of the coherently received baseband signals at three different frequency components, the proposed OSNR monitor is also insensitive to spectral narrowing induced by cascaded wavelength selective switches (WSSs). We experimentally demonstrate accurate data-format-transparent and filtering-effect-insensitive OSNR monitoring for 25-Gbaud dual-polarization (DP-) transmissions with QPSK, 16-QAM and 64-QAM signals over various distances with different amount of filtering effects by cascaded WSSs. We further characterize the influence of different system parameters, such as the bandwidth of the electrical low-pass filter, the laser frequency offset and laser linewidth on the accuracy of the proposed OSNR monitor. The robustness of the proposed OSNR monitoring scheme to fiber nonlinearities, calibration parameter mismatches and variations of WSS parameters are also investigated.

17.
Opt Express ; 23(7): 8409-21, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968680

RESUMEN

Discrete multi-tone (DMT) modulation is an attractive modulation format for short-reach applications to achieve the best use of available channel bandwidth and signal noise ratio (SNR). In order to realize polarization-multiplexed DMT modulation with direct detection, we derive an analytical transmission model for dual polarizations with intensity modulation and direct diction (IM-DD) in this paper. Based on the model, we propose a novel polarization-interleave-multiplexed DMT modulation with direct diction (PIM-DMT-DD) transmission system, where the polarization de-multiplexing can be achieved by using a simple multiple-input-multiple-output (MIMO) equalizer and the transmission performance is optimized over two distinct received polarization states to eliminate the singularity issue of MIMO demultiplexing algorithms. The feasibility and effectiveness of the proposed PIM-DMT-DD system are investigated via theoretical analyses and simulation studies.

18.
Opt Express ; 23(2): 1176-89, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25835877

RESUMEN

Advanced modulation formats combined with digital signal processing and direct detection is a promising way to realize high capacity, low cost and power efficient short reach optical transmission system. In this paper, we present a detailed investigation on the performance of three advanced modulation formats for 100 Gb/s short reach transmission system. They are PAM-4, CAP-16 and DMT. The detailed digital signal processing required for each modulation format is presented. Comprehensive simulations are carried out to evaluate the performance of each modulation format in terms of received optical power, transmitter bandwidth, relative intensity noise and thermal noise. The performance of each modulation format is also experimentally studied. To the best of our knowledge, we report the first demonstration of a 112 Gb/s transmission over 10km of SSMF employing single band CAP-16 with EML. Finally, a comparison of computational complexity of DSP for the three formats is presented.

19.
Opt Express ; 22(20): 24044-54, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25321980

RESUMEN

Modulation format independence is one of the key challenges in digital signal processing (DSP) techniques for future elastic optical transmissions. We proposed a modulation-format-independent blind phase search (MFI-BPS) algorithm for square M-ary quadrature amplitude modulation (M-QAM) systems, in which modulation format recognition (MFR) and carrier phase estimation (CPE), are included and implemented both in a feed-forward manner. Comprehensive simulation and the experimental studies on 224 Gbit/s polarization multiplexing 16-QAM (PM-16QAM) systems demonstrate the feasibility and the effectiveness of the proposed MFI-BPS algorithm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...