Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Asian J Androl ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37534881

RESUMEN

Hyperlipidemia is a major risk factor for erectile dysfunction (ED). Oxidative stress and phenotypic modulation of corpus cavernosum smooth muscle cells (CCSMCs) are the key pathological factors of ED. N-acetylcysteine (NAC) can inhibit oxidative stress; however, whether NAC can alleviate pathological variations in the corpus cavernosum and promote erectile function recovery in hyperlipidemic rats remains unclear. A hyperlipidemia model was established using 27 eight-week-old male Sprague-Dawley (SD) rats fed a high-fat and high-cholesterol diet (hyperlipidemic rats, HR). In addition, 9 male SD rats were fed a normal diet to serve as controls (NC). HR rats were divided into three groups: HR, HR+normal saline (NS), and HR+NAC (n = 9 for each group; NS or NAC intraperitoneal injections were administered daily for 16 weeks). Subsequently, the lipid profiles, erectile function, oxidative stress, phenotypic modulation markers of CCSMCs, and tissue histology were analyzed. The experimental results revealed that erectile function was significantly impaired in the HR and HR + NS groups, but enhanced in the HR + NAC group. Abnormal lipid levels, over-activated oxidative stress, and multi-organ lesions observed in the HR and HR + NS groups were improved in the HR + NAC group. Moreover, the HR group showed significant phenotypic modulation of CCSMCs, which was also inhibited by NAC treatment. This report focuses on the therapeutic effect of NAC in restoring erectile function using a hyperlipidemic rat model by preventing CCSMC phenotypic modulation and attenuating oxidative stress.

2.
Asian J Androl ; 22(5): 493-499, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31736475

RESUMEN

Phosphoribosyl-pyrophosphate synthetase 2 (PRPS2) is a rate-limiting enzyme and plays an important role in purine and pyrimidine nucleotide synthesis. Recent studies report that PRPS2 is involved in male infertility. However, the role of PRPS2 in hypospermatogenesis is unknown. In this study, the relationship of PRPS2 with hypospermatogenesis and spermatogenic cell apoptosis was investigated. The results showed that PRPS2 depletion increased the number of apoptotic spermatogenic cells in vitro. PRPS2 was downregulated in a mouse model of hypospermatogenesis. When PRPS2 expression was knocked down in mouse testes, hypospermatogenesis and accelerated apoptosis of spermatogenic cells were noted. E2F transcription factor 1 (E2F1) was confirmed as the target gene of PRPS2 and played a key role in cell apoptosis by regulating the P53/Bcl-xl/Bcl-2/Caspase 6/Caspase 9 apoptosis pathway. Therefore, these data indicate that PRPS2 depletion contributes to the apoptosis of spermatogenic cells and is associated with hypospermatogenesis, which may be helpful for the diagnosis of male infertility.


Asunto(s)
Apoptosis/genética , Factor de Transcripción E2F1/metabolismo , Oligospermia/genética , Ribosa-Fosfato Pirofosfoquinasa/genética , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Animales , Caspasa 6/metabolismo , Caspasa 9/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Factor de Transcripción E2F1/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN/metabolismo , Distribución Aleatoria , Transducción de Señal , Espermatocitos/fisiología , Testículo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Proteína bcl-X/metabolismo
3.
Oncol Lett ; 16(4): 5160-5166, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30250582

RESUMEN

Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) has been reported to be overexpressed in prostate cancer cells and associated with tumorigenesis in various types of cancer. However, the biological function of lncRNA PVT1 remains largely unknown. The aim of the present study was to investigate the effect of lncRNA PVT1 expression on the proliferation and migration of prostate cancer cells. Stably transfected prostate cancer cells with downregulated expression of lncRNA PVT1 were constructed by an efficient siRNA fragment, followed by confirmation by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Proliferation was assessed using CCK-8, colony formation and xenograft assays, and cell migration was evaluated using a wound healing assay. The PathScan® Intracellular Signaling Array kit was utilized to explore the underlying molecular mechanisms of lncRNA PVT1 expression in prostate cancer cells. RT-qPCR results confirmed that the lncRNA PVT1 expression level was successfully knocked down in prostate cancer cells. When lncRNA PVT1 expression was downregulated in prostate cancer cells, proliferation and migration were significantly inhibited, compared with the control lncRNA PVT1 group. Furthermore, PVT1 knockdown decreased the phosphorylation of p38 in DU145 cells. Therefore, the present study demonstrated that lncRNA PVT1 downregulation inhibits the proliferation and migration of prostate cancer cells, and is associated with p38 phosphorylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA