Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 26(26): 26646-26663, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31292872

RESUMEN

Organic carbon (OC) and elemental carbon (EC) were measured in 24 h fine particulate matter (PM2.5) samples collected from May 2015 to April 2016 at urban and rural sites in Nanchong, a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China. The annual average PM2.5, OC, and EC concentrations at urban sites were 45.6-55.7, 8.5-11.5, and 2.8-3.4 µg m-3, respectively, which were similar to the corresponding values (48.3, 10.6, and 3.3 µg m-3) at the rural site. The PM2.5 concentrations displayed strong monthly variations, with the highest (78.8-105.0 µg m-3) in January or February. Likewise, daily OC and EC concentrations exhibited high values in October (only for OC) and December 2015 to February 2016. Correlation, positive matrix factorization, and concentration weighted trajectory analyses were combined to investigate the sources of carbonaceous aerosol. The results indicated that OC and EC were mainly from biomass burning (60.7% and 45.8%) and coal combustion (30.2% and 25.7%), followed by vehicle emissions and road dust. The enhanced emissions from residential coal and biofuel uses in winter and straw combustion in October contributed to higher concentrations of OC and EC during these months. The contributions of biomass burning to OC and EC were significantly higher at the rural site (69.2% and 51.8%) than urban sites (56.3-58.6% and 37.8-41.5%). In addition to local emissions, the high concentrations of OC and EC at Nanchong were also influenced by regional transport in the basin.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Urbanización , Biomasa , Carbono/análisis , China , Ciudades , Carbón Mineral/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Desarrollo Industrial , Estaciones del Año , Emisiones de Vehículos/análisis
2.
J Am Chem Soc ; 131(7): 2629-37, 2009 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-19191583

RESUMEN

In this article, the highly efficient formation of a series of recently discovered aromatic oligoamide macrocycles consisting of six meta-linked residues is first discussed. The macrocycles, with their backbones rigidified by three-center hydrogen bonds, were found to form in high yields that deviate dramatically from the theoretically allowed value obtained from kinetic simulation of a typical kinetically controlled macrocyclization reaction. The folding of the uncyclized six-residue oligomeric precursors, which belong to a class of backbone-rigidified oligoamides that have been demonstrated by us to adopt well-defined crescent conformations, plays a critical role in the observed high efficiency. Out of two possible mechanisms, one is consistent with experimental results obtained from the coupling of crescent oligoamides of different lengths, which suggests a remote steric effect that discourages the formation of oligomers having lengths longer than the backbone of the six-residue precursors. The suggested mechanism is supported by the efficient formation of very large aromatic oligoamide macrocycles consisting of alternating meta- and para-linked residues. These large macrocycles, having H-bond-rigidified backbones and large internal lumens, are formed in high (>80%) yields on the basis of one-step, multicomponent macrocyclization reactions. The condensation of monomeric meta-diamines and a para-diacid chloride leads to the efficient formation of macrocycles with 14, 16, and 18 residues, corresponding to 70-, 80-, and 90-membered rings that contain internal cavities of 2.2, 2.5, and 2.9 nm across. In addition, the condensation between trimeric or pentameric diamines and a monomeric diacid chloride had resulted in the selective formation of single macrocyclic products with 16 or 18 residues. The efficient formation of the macrocycles, along with the absence of other noncyclic oligomeric and polymeric byproducts, is in sharp contrast to the poor yields associated with most kinetically controlled macrocyclization reactions. This system represents a rare example of highly efficient kinetic macrocyclization reactions involving large numbers of reacting units, which provides very large, shape-persistent macrocycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...