Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 173: 105816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168571

RESUMEN

Foeniculum vulgare Mill. is a medicinal and food homologous plant, and it has various biological activities. Yet, no research has explored its anti-motion sickness effects. Chemical properties of fennel extracts (FvE) and flavonoids (Fvf) were analyzed based on UPLC-QTRAP-MS to elucidate its potential anti-motion sickness components in the present study. The mice models of motion sickness were stimulated by biaxial rotational acceleration. Behavioral experiments such as motion sickness index and open field test and the measurement of neurotransmitters were used to evaluate the efficacy of compounds on motion sickness. Results showed that FvE contains terpenes, alkaloids, flavonoids, etc. Eight flavonoids including quercetin-3ß-D-glucoside, rutin, hyperoside, quercetin, miquelianin, trifolin, isorhamnetin and kaempferol were identified in the purified Fvf. FvE and Fvf significantly reduced the motion sickness index of mice by 53.2% and 48.9%, respectively. Fvf also significantly alleviated the anxious behavior of mice after rotational stimulation. Among the eight flavonoids, isorhamnetin had the highest oral bioavailability and moderate drug-likeness index and thus speculated to be the bioactive compound in fennel for its anti-motion sickness effect. It reduced the release of 5-HT and Ach to alleviate the motion sickness response and improve the work completing ability of mice and nervous system dysfunction after rotational stimulation. This study provided in-depth understanding of the anti-motion sickness bioactive chemical properties of fennel and its flavonoids, which will contribute to the new development and utilization of fennel.


Asunto(s)
Foeniculum , Mareo por Movimiento , Flavonoides/farmacología , Flavonoides/análisis , Quercetina , Foeniculum/química , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Estructura Molecular , Extractos Vegetales/química , Mareo por Movimiento/tratamiento farmacológico
2.
J Ethnopharmacol ; 290: 115077, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35131339

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As a common medicinal and edible plant, Zingiber officinale Roscoe (ginger) is often used for the prevention of motion sickness. However, the mechanism of its anti-motion sickness remains to be elucidated. AIM OF THE STUDY: To explore novel treatment for motion sickness with less side effects, anti-motion sickness effect of ginger (Zingiber officinale) extract (GE) and the possible molecular mechanisms were investigated. MATERIALS AND METHODS: The anti-motion sickness effect of ginger was evaluated through mice animal experimental models. Components of ginger that might contribute to the anti-motion sickness effect were analyzed by LC-MS/MS. Subsequently, biochemical analysis integrated with serum metabolomic profiling were performed to reveal the systematic response of motion sickness mice to ginger extract's amelioration effect. RESULTS: Exhaustive swimming time of mice in the GE group reached 8.9 min, which was 52.2% longer than that in the model group. Motion sickness index scores and time taken traversing balance beam of mice in the GE group were decreased by 53.2% and 38.5%, respectively. LC-MS/MS analysis suggested that various active ingredients in GE, such as gingerol, ginger oil and terpenoids, might contribute to its appealing anti-motion sickness activity. Biochemical analysis revealed that GE can relieve motion sickness through reducing histamine and acetylcholine release in vestibular system, regulating fatty acid oxidation, sugar metabolism and bile acid metabolism in mice. CONCLUSION: Gavage of mice with GE can effectively relieve the symptoms of autonomic nervous system dysfunction, improve the balance and coordination ability and ameliorate the ability to complete complex work after rotation stimulation. GE has attractive potential for development and utilization as novel anti-motion sickness food or drugs.


Asunto(s)
Mareo por Movimiento/patología , Extractos Vegetales/farmacología , Zingiber officinale/química , Acetilcolina/metabolismo , Animales , Animales no Consanguíneos , Conducta Animal/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Catecoles/farmacología , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Alcoholes Grasos/farmacología , Histamina/metabolismo , Masculino , Ratones , Aceites de Plantas/farmacología , Azúcares/metabolismo , Espectrometría de Masas en Tándem , Terpenos/farmacología
3.
Nat Prod Res ; 36(14): 3598-3602, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33430643

RESUMEN

Two new flavanoids fissistiganoids A and B (1 and 2), together with two known pterocarpans derivatives (3 and 4), were isolated from the stems of Fissistigma tungfangense. The structures of these compounds were elucidated using comprehensive spectroscopic methods. The absolute configurations of fissistiganoids A and B (1 and 2) were determined by comparing their ECD spectra with quantum-mechanics ECD calculations. The inhibitory activities of all compounds against three cancer cell lines HeLa, MCF-7 and A549 were evaluated. Compounds 1-4 showed moderate inhibitory effects on HeLa, MCF-7 and A549 cells with IC50 values ranging from 12.5 to 42.3 µM.


Asunto(s)
Annonaceae , Pterocarpanos , Células A549 , Flavonoides/química , Flavonoides/farmacología , Humanos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA