Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 127: 155392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412575

RESUMEN

BACKGROUND: Tiliroside (TIL) is a flavonoid compound that exists in a variety of edible plants. These dietary plants are widely used as food and medicine to treat various diseases. However, the effect of TIL on pancreatic cancer (PC) and its underlying mechanisms are unclear. PURPOSE: This study aims to reveal the anti-PC effect of TIL and clarify its mechanism. METHODS: The inhibitory effects of TIL on PC growth were studied both in vitro and in vivo. Flow cytometry, transmission electron microscopy, immunofluorescence, biochemical analyses, RT-qPCR, genetic ablation, and western blotting were employed to evaluate ferroptosis, autophagy, and iron regulation. Additionally, RNA sequencing (RNA-seq), biomolecular layer interferometry (BLI), and molecular simulation analysis were combined to identify TIL molecular targets. The clinicopathological significance of Calpain-2 (CAPN2) was determined through immunohistochemistry (IHC) on a PC tissue microarray. RESULTS: Herein, we showed that TIL was an effective anti-PC drug. CAPN2 was involved in the TIL - induced elevation of the labile iron pool (LIP) in PC cells. TIL directly bound to and inhibited CAPN2 activity, resulting in AKT deactivation and decreased expression of glucose transporters (GLUT1 and GLUT3) in PC cells. Consequently, TIL impaired ATP and NADPH generation, inducing autophagy and ROS production. The accumulation of TIL-induced ROS combined with LIP iron causes the Fenton reaction, leading to lipid peroxidation. Meanwhile, TIL-induced reduction of free iron ions promoted autophagic degradation of ferritin to regulate cellular iron homeostasis, which further exacerbated the death of PC cells by ferroptosis. As an extension of these in vitro findings, our murine xenograft study showed that TIL inhibited the growth of PANC-1 cells. Additionally, we showed that CAPN2 expression levels were related to clinical prognoses in PC patients. CONCLUSION: We identify TIL as a potent bioactive inhibitor of CAPN2 and an anti-PC candidate of natural origin. These findings also highlight CAPN2 as a potential target for PC treatment.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Calpaína/genética , Calpaína/farmacología , Especies Reactivas de Oxígeno/metabolismo , Flavonoides/farmacología , Neoplasias Pancreáticas/patología , Hierro/metabolismo , Homeostasis
2.
Biochem Pharmacol ; 193: 114813, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34673014

RESUMEN

Recent studies have verified that inducing reactive oxygen species (ROS) is one of the gemcitabine anti-tumor mechanisms of action. Human carbonyl reductase 1 (CBR1) plays an important role in protecting cells against oxidative damage. However, it is unclear whether CBR1 is involved in pancreatic cancer (PC) progression and resistance to gemcitabine. Based on the GEPIA database, we analyzed tumor tissue samples from PC patients using immunohistochemistry (IHC) and revealed that CBR1 was highly expressed in PC tissues and that this was significantly correlated with the clinicopathological features of PC. Genetic inhibition of CBR1 suppressed PC cell proliferation by regulating ROS generation. Furthermore, gemcitabine upregulated CBR1 expression, which could limit the anti-tumor activity of gemcitabine, and attenuation of CBR1 enhanced gemcitabine sensitivity in vitro and in vivo. Additionally, we report that chrysin directly binds to CBR1, which inhibited its enzymatic activity both at the molecular and cellular levels. Inhibition of CBR1 by chrysin increased cellular ROS levels and led to ROS-dependent autophagy, which resulted in the degradation of ferritin heavy polypeptide 1 (FTH1) and an increase in the intracellular free iron level that participates in ferroptosis in PC cells. Finally, our results showed that chrysin enhanced PC sensitivity to gemcitabine by inducing ferroptotic death in vitro and in vivo. Collectively, these findings indicate that CBR1 is a potential therapeutic target for PC treatment. In addition, we elucidated a novel mechanism underlying the anti-tumor effects of chrysin.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Autofagia/efectos de los fármacos , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Ferroptosis/efectos de los fármacos , Flavonoides/farmacología , Oxidorreductasas de Alcohol/genética , Animales , Antineoplásicos , Autofagia/fisiología , Línea Celular Tumoral , Citosol/metabolismo , Desoxicitidina/farmacología , Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Peroxidación de Lípido , Masculino , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Neoplasias Pancreáticas , Especies Reactivas de Oxígeno , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
3.
Eur J Pharm Sci ; 142: 105163, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31756447

RESUMEN

Our previous studies have indicated that human umbilical vein endothelial cell (HUVEC) vaccination appears to be a potentially promising anti-angiogenesis therapy, but the modest therapeutic anti-tumour efficiency limits its clinical use. This highlights the importance of identifying more potent therapeutic HUVEC vaccine strategies for clinical testing. In the present study, the immune-modulating doses of docetaxel (DOC) was combined with 1 × 106 viable HUVECs as a means to enhance the therapeutic anti-tumour efficiency of the HUVEC vaccine. Our results demonstrated that 5 mg/kg DOC administrated prior to HUVEC vaccine could most effectively assist HUVEC vaccine to display a remarkable suppression of tumour growth and metastasis as wells as a prolongation of survival time in a therapeutic procedure. CD31 immunohistochemical analysis of the excised tumours confirmed a significant reduction in vessel density after treatment with the HUVEC vaccine with 5 mg/kg DOC. Additionally, an increased HUVEC-specific antibody level, activated CTLs and an elevated IFN-γ level in cultured splenocytes were revealed after treatment with HUVEC vaccine with 5 mg/kg DOC. Finally, 5 mg/kg DOC coupled with the HUVEC vaccine led to induction of significant increases in CD8+T cells and decrease in Tregs in the tumour microenvironment. Taken together, all the results verified that 5 mg/kg DOC could assist HUVEC vaccine to elicit strong HUVEC specific humoral and cellular responses, which could facilitate the HUVEC vaccine-mediated inhibition of cancer growth and metastasis. These findings provide the immunological rationale for the combined use of immune-modulating doses of DOC and HUVEC vaccines in patients with cancer.


Asunto(s)
Antineoplásicos/inmunología , Antineoplásicos/farmacología , Vacunas contra el Cáncer/inmunología , Docetaxel/farmacología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Vacunación/métodos
4.
Cancer Biother Radiopharm ; 34(7): 464-471, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31009240

RESUMEN

Background: A human umbilical vein endothelial cell (HUVEC) vaccine is a promising anti-angiogenesis therapy, but the modest therapeutic antitumor efficacy restricts its clinical use. Preclinical evidence supports the combination of antiangiogenic agents and chemotherapy for cancer treatment. Materials and Methods: In the present study, docetaxel (DOC) was combined with HUVEC vaccine to develop a HUVEC-DOC treatment regime. This study was designed to investigate the synergistic anti-breast cancer effects and mechanisms of the HUVEC-DOC treatment. Results: Compared with either agent monotherapy, HUVEC-DOC treatment exhibited more favorable anti-EMT-6 breast cancer effects in vivo. CD31 immunohistochemical analysis of the excised tumors showed notable decreases in vessel density after HUVEC-DOC administration, while T cells isolated from mice immunized with HUVEC-DOC showed increased cytotoxicity against HUVECs. Furthermore, the quantity of interferon gamma released from HUVEC-DOC-administered mice was significantly higher than the other three groups, and enhanced CD8+ T cell infiltration was observed more frequently in tumors excised from HUVEC-DOC-treated mice. Finally, the percentage of regulatory T cells was significantly decreased after HUVEC-DOC immunization. Conclusions: All the data verified that combining DOC with a HUVEC vaccine could generate synergistic anti-breast cancer activity, which might have the potential for combination treatment of human breast cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Vacunas contra el Cáncer/uso terapéutico , Docetaxel/uso terapéutico , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Vacunas contra el Cáncer/farmacología , Docetaxel/farmacología , Femenino , Humanos
5.
Eur J Pharm Sci ; 114: 228-237, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29277666

RESUMEN

Human umbilical vein endothelial cell (HUVEC) vaccine has been proved as an effective whole-cell vaccine, but the modest therapeutic anti-tumor efficiency limits its clinical use. Various antigen forms, including paraformaldehyde-fixed HUVEC, glutaraldehyde-fixed HUVEC, HUVEC lysate and live HUVEC, have been intensively used in HUVEC vaccine preparation, however, the most effective antigen form has not yet been identified. In the present study, these four commonly used antigen forms were used to prepare vaccines named Para-Fixed-EC, Glu-Fixed-EC, Lysate-EC, and Live-EC respectively, and the anti-tumor efficacy of these four vaccines was investigated. Results showed that Live-EC exhibited the most favorable anti-tumor growth and metastasis effects among the four vaccines in both H22 hepatocellular carcinoma and Lewis lung cancer models. High titer anti-HUVEC antibodies were detected in Live-EC immunized mice sera, and the immune sera of Live-EC group could significantly inhibit HUVEC proliferation and tube formation. Moreover, T cells isolated from Live-EC immunized mice exhibited strong cytotoxicity against HUVEC cells, with an increasing IFN-γ and decreasing Treg production in Live-EC immunized mice. Finally, CD31 immunohistochemical analysis of the excised tumors verified a significant reduction in vessel density after Live-EC vaccination, which was in accordance with the anti-tumor efficiency. Taken together, all the results proved that live HUVEC was the most effective antigen form to induce robust HUVEC specific antibody and CTL responses, which could lead to the significant inhibition of tumor growth and metastasis. We hope the present findings would provide a rationale for the further optimization of HUVEC vaccine.


Asunto(s)
Antígenos de Neoplasias/administración & dosificación , Antineoplásicos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Células Endoteliales de la Vena Umbilical Humana , Animales , Antígenos de Neoplasias/inmunología , Antineoplásicos/inmunología , Vacunas contra el Cáncer/inmunología , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...