Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 89, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702722

RESUMEN

Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
2.
Environ Res ; 252(Pt 3): 119009, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679277

RESUMEN

Fine particulate matter (PM2.5) harms human health and hinders normal human life. Considering the serious complexity and obvious regional characteristics of PM2.5 pollution, it is urgent to fill in the comprehensive overview of regional characteristics and interannual evolution of PM2.5. This review studied the PM2.5 pollution in six typical areas between 2014 and 2022 based on the data published by the Chinese government and nearly 120 relevant literature. We analyzed and compared the characteristics of interannual and quarterly changes of PM2.5 concentration. The Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) made remarkable progress in improving PM2.5 pollution, while Fenwei Plain (FWP), Sichuan Basin (SCB) and Northeast Plain (NEP) were slightly inferior mainly due to the relatively lower level of economic development. It was found that the annual average PM2.5 concentration change versus year curves in the three areas with better pollution control conditions can be merged into a smooth curve. Importantly, this can be fitted for the accurate evaluation of each area and provide reliable prediction of its future evolution. In addition, we analyzed the factors affecting the PM2.5 in each area and summarize the causes of air pollution in China. They included primary emission, secondary generation, regional transmission, as well as unfavorable air dispersion conditions. We also suggested that the PM2.5 pollution control should target specific industries and periods, and further research need to be carried out on the process of secondary production. The results provided useful assistance such as effect prediction and strategy guidance for PM2.5 pollution control in Chinese backward areas.

3.
J Hazard Mater ; 467: 133728, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335619

RESUMEN

Cities in Northeast China, e.g., Harbin, were brought to the forefront of air pollution control by a national-level policy promulgated in 2021, i.e., the Circular on Further Promoting the Pollution Prevention and Control Battle (the FP3CB Circular) which aimed at eliminating heavy or severe air pollution events. In this study, we explored the response of Harbin aerosol to the FP3CB Circular, based on observational results from two campaigns conducted during 2020-2021 and 2021-2022. A clear decreasing trend was identified for the impact of domestic biomass burning between the two winters, presumably driven by the clean heating actions. The 2021-2022 winter was also characterized by reduced formation of secondary organic aerosol but enhanced production of nitrate, which could be attributed to the less humid conditions but higher temperatures, respectively, compared to the 2020-2021 winter. The overall effect of these changes was a decrease in the contribution of organic species to wintertime aerosol in Harbin. In addition, the number of heavy or severe pollution days rebounded in the 2021-2022 winter compared to 2020-2021 (5 vs. 3), indicating that the emissions of primary particles and gaseous precursors must be further reduced to achieve the ambitious goals of the FP3CB Circular.

4.
Mater Today Bio ; 24: 100918, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38223459

RESUMEN

The development of skin substitutes aims to replace, mimic, or improve the functions of human skin, regenerate damaged skin tissue, and replace or enhance skin function. This includes artificial skin, scaffolds or devices designed for treatment, imitation, or improvement of skin function in wounds and injuries. Therefore, tremendous efforts have been made to develop functional skin substitutes. However, there is still few reports systematically discuss the relationship between the advanced function and design requirements. In this paper, we review the classification, functions, and design requirements of artificial skin or skin substitutes. Different manufacturing strategies for skin substitutes such as hydrogels, 3D/4D printing, electrospinning, microfluidics are summarized. This review also introduces currently available skin substitutes in clinical trials and on the market and the related regulatory requirements. Finally, the prospects and challenges of skin substitutes in the field of tissue engineering are discussed.

5.
ACS Appl Mater Interfaces ; 15(40): 46738-46746, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37756219

RESUMEN

Artificial peroxisome plays an important part in protocell system construction and disease therapy. However, it remains an enormous challenge to exploit a practicable artificial peroxisome with multiple and stable activities. Nanozymes with multienzyme mimetic activities stand out for artificial peroxisome preparation. Herein, a novel nanozyme─Co-nanoparticle-embedded N-enriched carbon nanocubes (Co,N-CNC) decorated by hollow NiPt nanospheres (hNiPt@Co-NC) with featured tetra-enzyme mimetic activities of natural peroxisome─was prepared. Due to the synergistic effect of hollow NiPt nanospheres (hNiPtNS) and cubic porous Co,N-CNC support, hNiPt@Co-NC exhibited oxidase (OXD), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD)-like activities with comparable catalytic efficiency, enabling it to be a competitive candidate for artificial peroxisome investigation. Based on the high OXD-mimetic activity of hNiPt@Co-NC, a facile colorimetric platform was proposed for reduced glutathione (GSH) detection with a wide linear range (0.1-5 µM, 5-100 µM) and a low detection limit (27 nM). Thus, the hNiPt@Co-NC with tetra-enzyme mimetic activities possessed bright prospects in diversified biotechnological applications, including artificial organelles, biosensing, and medical diagnostics.

6.
Mol Immunol ; 162: 74-83, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37659168

RESUMEN

BACKGROUND: Overweight and obesity are related to an increased risk of asthma. The effect of platycoside E (PE) on obesity-related asthma remains unknown. METHODS: To mimic obesity-related asthma conditions in vivo, C57BL/6 mice were exposed to a high-fat diet (HFD) and challenged with ovalbumin (OVA). PE was administrated intraperitoneally during the OVA treatment. Body weight was measured at 8th week before PE treatment and after sacrificing the mice. Airway inflammation and airway hyperresponsiveness (AHR) were evaluated. Immunohistochemistry staining was performed to evaluate eosinophils. Histopathological changes were determined by HE staining. Cellular model of asthma was established using IL-13 in BEAS-2B cells. Levels of proinflammatory cytokines and oxidative stress indicators were measured by ELISA kits and commercial kits, respectively. Cell viability was detected by CCK-8 assays. RESULTS: IL-13 treatment led to inflammatory and oxidative damage in bronchial epithelial cells, which was relieved by PE. PE administration significantly reduced HFD-induced obesity and relieved AHR and airway inflammation in obese asthmatic mice. The expression of proinflammatory cytokines in BALF and lung tissues in obese asthmatic mice were reduced by PE. PE administration also reduced infiltration of eosinophils and inflammation scores in obese asthmatic mice. CONCLUSION: PE suppresses airway inflammation and AHR in obese asthmatic mice and serves as an effective option for treating obesity-related asthma.


Asunto(s)
Asma , Interleucina-13 , Animales , Ratones , Ratones Endogámicos C57BL , Asma/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Citocinas , Modelos Animales de Enfermedad
7.
Environ Pollut ; 335: 122362, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37567407

RESUMEN

Fine particulate matter (PM2.5) in Northeast China was targeted by national-level clean air policy for the first time in 2022, with the release of Action Plan to eliminate heavy air pollution events. In this study, we investigated sources of PM2.5 during three successive winters in Harbin, a megacity in Northeast China, based on observational results from several recent campaigns in 2018-2021. During the 2020-2021 campaign, daytime and nighttime samples were collected in specific months in addition to 24-h integrated measurements, and the two sets of samples were combined in different ways to run a positive matrix factorization model. The source apportionment results suggested that the resolved secondary organic carbon (SOCPMF) had an uncertainty of ∼12%. Secondary aerosols were found to show the following features for the typical winters without agricultural fires. First, SOCPMF could be properly constrained by results from another widely-used approach for SOC estimation, the elemental carbon-tracer method. Second, secondary PM2.5 calculated using SOCPMF and secondary inorganic ions were generally in line with the independent estimations based on air quality data. Third, secondary components accounted for more than 50% of PM2.5 on average and contributed even more significantly during severe haze episodes, which were the focus of the latest Action Plan. This study also found that the wintertime PM2.5 decreased more slowly during 2017-2021 compared to 2013-2017, by ∼1 and 10 µg/m3 per year, respectively, for the metropolitan area where Harbin is located at. Our results highlighted the importance of secondary aerosols for further improving air quality in Northeast China, and for avoiding heavy pollution as required by the latest Action Plan.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Contaminación del Aire/análisis , China , Estaciones del Año , Aerosoles/análisis , Carbono/análisis
8.
Genes Dis ; 10(6): 2457-2469, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37554201

RESUMEN

Atherosclerosis is one of the leading causes of disease and death worldwide. The identification of new therapeutic targets and agents is critical. JAZF1 is expressed in many tissues and is found at particularly high levels in adipose tissue (AT). JAZF1 suppresses inflammation (including IL-1ß, IL-4, IL-6, IL-8, IL-10, TNFα, IFN-γ, IAR-20, COL3A1, laminin, and MCP-1) by reducing NF-κB pathway activation and AT immune cell infiltration. JAZF1 reduces lipid accumulation by regulating the liver X receptor response element (LXRE) of the SREBP-1c promoter, the cAMP-response element (CRE) of HMGCR, and the TR4 axis. LXRE and CRE sites are present in many cytokine and lipid metabolism gene promoters, which suggests that JAZF1 regulates these genes through these sites. NF-κB is the center of the JAZF1-mediated inhibition of the inflammatory response. JAZF1 suppresses NF-κB expression by suppressing TAK1 expression. Interestingly, TAK1 inhibition also decreases lipid accumulation. A dual-targeting strategy of NF-κB and TAK1 could inhibit both inflammation and lipid accumulation. Dual-target compounds (including prodrugs) 1-5 exhibit nanomolar inhibition by targeting NF-κB and TAK1, EGFR, or COX-2. However, the NF-κB suppressing activity of these compounds is relatively low (IC50 > 300 nM). Compounds 6-14 suppress NF-κB expression with IC50 values ranging from 1.8 nM to 38.6 nM. HS-276 is a highly selective, orally bioavailable TAK1 inhibitor. Combined structural modifications of compounds using a prodrug strategy may enhance NF-κB inhibition. This review focused on the role and mechanism of JAZF1 in inflammation and lipid accumulation for the identification of new anti-atherosclerotic targets.

9.
BMC Vet Res ; 19(1): 94, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496032

RESUMEN

BACKGROUND: Ilicis chinensis folium extract (ICFE) is a powder extracted and processed with Ilex chinensis Sims (ICS) which has numerous bioactivities and is conventionally used in traditional Chinese medicine. Nonetheless, there has been no definitive study evaluating ICFE's application as a feed supplement for broilers. This research sought to determine the chemical composition and evaluate how dietary ICFE supplementation affects the growth performance, serum metrics, intestinal structure, and antioxidant capacity of broilers. METHODS: A total of 360 one-day-old broiler chicks were assigned to four treatments (with 9 replicates of 10 chicks, each) of dietary supplementation with ICFE at 0, 250, 500, and 1,000 mg /kg for 42 days. RESULTS: Ten polyphenolic compounds and two triterpenoid glycosides were detected by HPLC. In the grower stage and overall, broilers supplemented with 500 and 1,000 mg/kg ICFE exhibited a higher ADFI (P < 0.05) than the controls. Additionally, compared to the controls, broilers receiving low, medium, or high dosages of ICFE exhibited higher average daily gains (P < 0.05) throughout the starter stage and overall. Organ indices showed no significant variation, suggesting that ICFE was non-toxic. ICFE supplementation increased the height of villi in the duodenum and jejunum, reduced crypt depth, and increased the villus/crypt ratio in the duodenum (P < 0.05). Serum concentrations of IL-4 and IgA were increased in ICFE-supplemented broilers. The serum malondialdehyde concentration was reduced, whereas superoxide dismutase activity and total antioxidant capacity increased through supplementation with ICFE. CONCLUSION: ICFE supplementation can improve intestinal morphology, antioxidant capacity, and growth performance of broilers. Hence, ICFE is a promising and safe alternative to antibiotics in broilers, and 500 mg/kg appears to be the optimal dose.


Asunto(s)
Antioxidantes , Pollos , Animales , Antioxidantes/farmacología , Dieta/veterinaria , Intestinos , Suplementos Dietéticos , Alimentación Animal/análisis
10.
ACS Omega ; 8(9): 8664-8674, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910987

RESUMEN

A method for determining combustion instability using flame structure parameters is presented. A speaker is used to provide controllable external excitation for the combustion system. The experimental object is a methane-air swirl premixed flame. The flame structure parameters such as height, width, and flame surface density extracted from the hydroxyl planar laser-induced fluorescence image were used to analyze combustion instability at different equivalence ratios (0.8-1.2) and inlet flow rates. It is confirmed that the inflection point of the flame structure parameters corresponds to the evolution of combustion instability verified by the flame transfer function. The results show that with the increase of inlet velocity v, the flame aspect ratio h/b, average OH* concentration, and surface density Σ gradually decrease. The thickness δ of the flame brush shows an increasing trend under the same conditions. With the increase of equivalence ratio Φ, the average OH* concentration and flame surface density Σ increase continuously. The changing trend of flame brush thickness decreases first and then increases to a peak. Finally, it continues to decline after reaching the peak. The flame responds strongly to the sound field when the equivalence ratio is 0.9 and 1.0. In the range of 80-240 Hz, the flame response near 110 and 190 Hz is stronger at each equivalence ratio (0.8-1.0). When the equivalent ratio is 0.9 and 1.0, the amplitude fluctuations of the flame transfer function are much larger than those under other conditions. Meanwhile, the specific performances of the flame structure parameters are that the flame height, average OH* concentration, and flame surface density decrease, and the flame brush thickness increases. These results can be used as a basis for judging combustion instability. This method proves that the parameter information monitored during the flame combustion process can be used to judge the changes in combustion conditions and can adjust the corresponding conditions more accurately and quickly.

11.
J Enzyme Inhib Med Chem ; 37(1): 1437-1453, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35589670

RESUMEN

Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis , Complejo de la Endopetidasa Proteasomal , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Ligandos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
12.
Chemosphere ; 292: 133500, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34979207

RESUMEN

COVID-19 rebounded in China in January 2021, with Heilongjiang as one of the worst-affected provinces. This resulted in a new round of lockdown in Harbin, the capital city of Heilongjiang, from 20 January to 22 February of 2021. A field campaign was conducted to explore the responses of haze pollution in Harbin to the lockdown. Levoglucosan was used to reflect biomass burning emissions, while the molar ratio of sulfur (the sum of sulfur dioxide and sulfate) to nitrogen (the sum of nitrogen dioxide and nitrate), i.e., RS/N, was used as an indicator for the relative importance of coal combustion and vehicle emissions. Based on a synthesis of the levoglucosan and RS/N results, reference period was selected with minimal influences of non-lockdown-related emission variations. As indicated by the almost unchanged sulfur dioxide concentrations, coal combustion emissions were relatively stable throughout the lockdown and reference periods, presumably because the associated activities, e.g., heating supply, power generation, etc., were usually uninterruptible. On the other hand, as suggested by the increase of RS/N, vehicle emissions were considerably reduced during lockdown, likely due to the stay-at-home orders. Compared to results from the reference samples, the lockdown period exhibited higher levels of ozone and various indicators for secondary aerosol formation, pointing to an enhancement of secondary pollution. In addition, photochemistry-related reactions in aqueous phase appeared to be present during the lockdown period, which have not been reported in the frigid atmosphere over Northeast China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , SARS-CoV-2
13.
Sci Total Environ ; 810: 152272, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902410

RESUMEN

The massive agricultural sector in the Northeast Plain, which is of great importance for the food security in China, results in a huge amount of crop residues and thus substantial concern on haze pollution due to biomass burning (BB). To seek for effective control measures on BB emissions, a dramatic transition of open burning policy occurred in Heilongjiang Province, from the "legitimate burning" policy released in 2018 to the "strict prohibition" policy implemented in 2019 and beyond. Here we explored the BB aerosols during 2020-2021 in Harbin, the capital city of Heilongjiang. Although open burning was strictly prohibited by mandatory bans, agricultural fires were not actually eliminated, as indicated by the levoglucosan levels and fire count results. In general, the BB aerosols in Harbin were attributed to the overlaying of household burning and agricultural fire emissions. The former factor laid the foundation of biomass burning impacts, with BB contributions to organic carbon and elemental carbon (fBBOC and fBBEC) of 35 and 47%, respectively. The latter further enhanced the BB impacts during specific episodes breaking out in the spring of 2021 as well as the fall of 2020, when fBBOC and fBBEC increased to 64 and 57%, respectively. In addition, comparing to the fires of 2018-2019 which occurred in winter (in response to the "legitimate burning" policy), the agricultural fires were shifted to spring and fall in the 2020-2021 campaign, accompanied with an increase of combustion efficiency. This study illustrated how the agricultural fire emissions were influenced by the transition of open burning policy.


Asunto(s)
Contaminantes Atmosféricos , Incendios , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , China , Monitoreo del Ambiente , Material Particulado/análisis , Políticas , Estaciones del Año
14.
Genes (Basel) ; 12(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34946810

RESUMEN

Most sheep are seasonal estrus, and they breed in autumn when the days get shorter. Seasonal estrus is an important factor that affects the productivity and fertility of sheep. The key point to solve this problem is to explore the regulation mechanism of estrus in sheep. Therefore, in this study, transcriptomic sequencing technology was used to identify differentially expressed mRNAs in the hypothalamus, pituitary and ovary of Small Tail Han sheep (year-round estrus) and tan sheep (seasonal estrus) among luteal, proestrus and estrus stages. There were 256,923,304,156 mRNAs being identified in the hypothalamus, pituitary and ovary, respectively. Functional analysis showed that the photosensor, leucine and isoleucine biosynthesis pathways were enriched significantly. It is speculated that photoperiod may initiate estrus by stimulating the corresponding pathways in hypothalamus. ODC1, PRLH, CRYBB2, SMAD5, OPN1SW, TPH1 are believed to be key genes involved in the estrogen process. In conclusion, this study expanded the database of indigenous sheep breeds, and also provided new candidate genes for future genetic and molecular studies on the seasonal estrus trait in sheep.


Asunto(s)
Estro/genética , Hipotálamo/metabolismo , Células Neuroendocrinas/metabolismo , Ovario/metabolismo , Hipófisis/metabolismo , Transcriptoma/genética , Anestro/genética , Anestro/metabolismo , Animales , Vías Biosintéticas/genética , Cruzamiento/métodos , Estrógenos/genética , Estrógenos/metabolismo , Estro/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Isoleucina/genética , Isoleucina/metabolismo , Leucina/genética , Leucina/metabolismo , Fotoperiodo , ARN Mensajero/genética , Estaciones del Año , Ovinos
15.
Mol Med ; 27(1): 123, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592918

RESUMEN

Age-related cardiovascular disease is the leading cause of death in elderly populations. Coxibs, including celecoxib, valdecoxib, etoricoxib, parecoxib, lumiracoxib, and rofecoxib, are selective cyclooxygenase-2 (COX-2) inhibitors used to treat osteoarthritis and rheumatoid arthritis. However, many coxibs have been discontinued due to adverse cardiovascular events. COX-2 contains cyclooxygenase (COX) and peroxidase (POX) sites. COX-2 inhibitors block COX activity without affecting POX activity. Recently, quercetin-like flavonoid compounds with OH groups in their B-rings have been found to serve as activators of COX-2 by binding the POX site. Galangin-like flavonol compounds serve as inhibitors of COX-2. Interestingly, nabumetone, flurbiprofen axetil, piketoprofen-amide, and nepafenac are ester prodrugs that inhibit COX-2. The combination of galangin-like flavonol compounds with these prodrug metabolites may lead to the development of novel COX-2 inhibitors. This review focuses on the most compelling evidence regarding the role and mechanism of COX-2 in cardiovascular diseases and demonstrates that quercetin-like compounds exert potential cardioprotective effects by serving as cofactors of COX-2.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Ciclooxigenasa 2/metabolismo , Quercetina/uso terapéutico , Animales , Antioxidantes/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Cardiotónicos/uso terapéutico , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/enzimología , Inhibidores de la Ciclooxigenasa 2/efectos adversos , Humanos , Osteoartritis/tratamiento farmacológico , Medición de Riesgo , Factores de Riesgo
16.
Anim Genet ; 52(6): 857-867, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34494299

RESUMEN

Improvement of ewe reproduction is considerable by appropriately increasing litter size and sustaining non-seasonal breeding. However, their genetic makeups have not been entirely elucidated. Genome-wide analyses of 821 individuals were performed by combining three genomic approaches (genome-wide association study, XP-nSL, and runs of homozygosity). Consequently, 35 candidate genes including three domestication genes (TSHR, GTF2A1, and KITLG) were identified. Other than the FecB mutation at BMPR1B, we described a significant association of a missense mutation rs406686139 at seasonal lambing-associated TSHR gene with litter size. Some promising novel genes may be relevant for sheep reproduction by multitude biological processes, such as FETUB functioning in fertilization, HNRNPA1 in oogenesis, DCUN1D1 in spermatogenesis, and HRG in fertility outcome. The present study suggests that improvement of ewe reproduction is attributed to selective breeding, and casts light on the genetic basis and improvement of sheep reproduction.


Asunto(s)
Tamaño de la Camada/genética , Reproducción/genética , Oveja Doméstica/genética , Animales , Femenino , Estudio de Asociación del Genoma Completo , Estaciones del Año , Oveja Doméstica/metabolismo
17.
Arch Anim Breed ; 64(1): 131-138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084911

RESUMEN

The objective of the current study was to analyze expression levels of synapse differentiation inducing 1-like (SYNDIG1L) and unc-13 homolog C (UNC13C) genes in different tissues, while single-nucleotide polymorphisms (SNPs) of two genes were associated with multiple thoracic vertebrae traits in both Small-tailed Han sheep (STH) and Sunite sheep (SNT). The expression levels of SYNDIG1L and UNC13C were analyzed in the brain, cerebellum, heart, liver, spleen, lung, kidney, adrenal gland, uterine horn, longissimus muscle, and abdominal adipose tissues of two sheep breeds with different thoracic vertebral number (TVN) sheep (T13 groups and T14 groups) by real-time quantitative polymerase chain reaction (RT-qPCR). Meanwhile, the polymorphisms of UNC13C gene g.52919279C > T and SYNDIG1L gene g.82573325C > A in T14 and T13 were genotyped by the Sequenom MassARRAY® SNP assay, and association analysis was performed with the TVN. The results demonstrated that UNC13C gene was extensively expressed in 11 tissues. The expression of UNC13C gene in longissimus muscle of T14 groups of STH was significantly higher than that of T13 groups ( P < 0.05 ). SYNDIG1L gene was overexpressed in brain and cerebellum tissues, and the expression level of UNC13C gene in the brain and cerebellum of T13 groups in SNT was significantly higher than that of T14 groups ( P < 0.01 ). Association analysis showed that SNPs found in the UNC13C gene had no significant effects on TVN for both two genes. The polymorphism of SYNDIG1L g.82573325C > A was significantly correlated with the TVN in both STH ( P < 0.05 ) and SNT ( P < 0.01 ). Taken together, the SYNDIG1L gene was related to thoracic vertebral development, and this variation may be potentially used as a molecular marker to select the multiple thoracic vertebrae in sheep.

18.
PeerJ ; 9: e10953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33976954

RESUMEN

The pituitary is a vital endocrine organ that regulates animal seasonal reproduction by controlling the synthesis and secretion of the hormone. The change of photoperiod is the key factor affecting the function of the pituitary in animals, but the mechanism is unclear. Here, we studied the transcriptomic variation in pars distalis (PD) of the pituitary between short photoperiod (SP) and long photoperiod (LP) using RNA sequencing based on the OVX+E2 sheep. 346 differentially expressed (DE) lncRNAs and 186 DE-mRNA were found in the PD. Moreover, function annotation analysis indicated that the reproductive hormones and photoperiod response-related pathways including aldosterone synthesis and secretion, insulin secretion, thyroid hormone synthesis, and circadian entrainment were enriched. The interaction analysis of mRNA-lncRNA suggested that MSTRG.240648, MSTRG.85500, MSTRG.32448, and MSTRG.304959 targeted CREB3L1 and DUSP6, which may be involved in the photoperiodic regulation of the PD. These findings provide resources for further study on the seasonal reproductive in ewes.

19.
Environ Technol ; 42(2): 238-247, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31145672

RESUMEN

Benzotriazole (BTA) is a recalcitrant contaminant that is widely distributed in aquatic environments. This study explored the effectiveness of sulfate radical-based advanced oxidation process in degrading BTA (SR-AOP). The sulfate radical was generated by heat activation of persulfate (PS). Our results show alkaline pH promoted the BTA degradation. The solution pH also affected the speciation of total radicals. Sulfate radical ( S O 4 ⋅ - ) predominated at acidic pH while hydroxyl radical (HO•) predominated at basic pH. High temperature, high PS concentration and low BTA concentration promoted the BTA degradation. Influence of water matrix constituents on the reaction kinetics was assessed. We found that ≤10 mM of Cl- promoted the reaction, but 100 mM Cl- inhibited it. H C O 3 - was similar to Cl-. Br- and C O 3 2 - inhibited the reaction while S O 4 2 - did not affect the reaction. N O 3 - of ≤10 mM did not affect the reaction, but 100 mM of N O 3 - inhibited it. Eleven degradation intermediates were identified using ultra-high solution Orbitrap mass spectrometry. Based on the intermediates identified, possible reaction pathways were proposed. Overall, SR-AOP can effectively mineralize BTA, but water matrix constituents greatly influenced the reaction kinetics and thus should be carefully considered for its practical application. Abbreviations: BTA, benzotriazole; PS, persulfate; PMS, peroxymonosulfate; SPC, sodium percarbonate; AOP, advanced oxidation process; PS-AOP, persulfate-based advanced oxidation process; SR-AOP, sulfate radical-based advanced oxidation process; TAP, thermally activated persulfate; TOC, total organic carbon; TBA, tert-butyl alcohol.


Asunto(s)
Contaminantes Químicos del Agua , Cinética , Oxidación-Reducción , Sulfatos , Triazoles , Contaminantes Químicos del Agua/análisis
20.
ACS Omega ; 5(15): 8744-8753, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32337436

RESUMEN

Lean premixed flames are useful for low nitrogen oxide (NO x ) emissions but more prone to induce combustion instability in gas turbines. Combustion instability of a lean premixed swirling flame (LPSF) with hydrogen-methane was investigated experimentally. The effects of hydrogen addition on combustion instability with equivalence ratios 0.75-1 were investigated with acoustic frequencies (90-240 Hz) and acoustic amplitudes (the ratio of velocity fluctuation to an average velocity of 0-0.5), respectively, which are characterized by the gain and phase of the flame describing function (FDF). The evolution of vortex and the flame morphologies were observed by the particle image velocimetry (PIV), intensified charge-coupled device (ICCD), photomultiplier tube (PMT), and Cassegrain optical systems. The global and local heat release fluctuations of the LPSF were shown by CH*/OH* chemiluminescence and temperature measurements. Results show that the FDF features maximum and minimum gain values in the acoustic frequency range of 90-240 Hz and reaches local maximum peaks at 110 and 180 Hz and local minimum peaks at 160 Hz. It can also be observed that varying velocity amplitudes (0-0.5) have greater effects on the gain and phase of FDF than changing equivalence ratios (0.75-1) for lean swirling flames. Higher velocity amplitudes more effectively intensified the compression of the flame length, which enhanced the mixing of the high-burning gas and the unburned gas, and then heat release fluctuations increased. However, it is more interesting that the effects of hydrogen addition on the combustion instability of the LPSF show a completely opposite phenomenon due to acoustic frequency under all experimental conditions. The FDFs were compared at typical frequencies of 140 and 180 Hz, and it was found that combustion instability enhanced with increasing hydrogen content at 140 Hz while weakened at 180 Hz. The flow field of PIV images shows that it is related to the location and development of vortices in the flame with varying acoustic frequencies. The intensity of OH*/CH* chemiluminescence, local temperature, and heat release rate show the same changing trend with the flame morphology for two acoustic parameters with the increasing hydrogen content in the LPSF. This directly affects the compression and curvature of the LPSF and thereby changes the mixture and temperature of the combustible gas, which influence the heat release fluctuation of the LPSF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...