Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Funct ; 14(1): 74-86, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36504256

RESUMEN

In this work, we investigated the ameliorative effects of platycodin D (PD), a major active chemical ingredient isolated from the roots of Platycodon grandiflorum (PG), on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. PD treatment (2.5 and 5.0 mg kg-1) improved HFD-induced body weight gain. PD administration also decreased the fasting blood glucose (FBG) level and improved glucose and insulin tolerance levels. These data collectively showed that PD could maintain glucose homeostasis. In addition, the diabetic mice with PD treatment also showed fewer pathological changes in liver tissues and improved hepatic functional indexes with respect to the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and recovery of abnormal liver function caused by T2D. Except for these, PD decreased the decomposition of hepatic glycogen. The results from western blot analysis showed that PD treatment might regulate the hepatic gluconeogenesis pathway with the increased phosphorylation/expression of AMPK and decreased expressions of PCK1 and G6Pase. In the aspect of lipid metabolism, PD decreased the whole-body lipid levels, including total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL), and reduced the hepatic fat accumulation induced by T2D through the AMPK/ACC/CPT-1 fatty acid anabolism pathway. In addition, the results of molecular docking showed that PD may have a potential direct effect on AMPK and other key glycolipid metabolism proteins. To summarize, PD modulation of hepatic glycolipid metabolism abnormalities is promising for T2D therapy in the future.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Glucosa/metabolismo , Hiperglucemia/metabolismo , Hígado/metabolismo , Simulación del Acoplamiento Molecular , Estreptozocina
2.
J Pharm Biomed Anal ; 223: 115118, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36332330

RESUMEN

Coronavirus disease (COVID-19) caused by SARS-COV-2 infection has been widely prevalent in many countries and has become a common challenge facing mankind. Traditional Chinese medicine (TCM) has played a prominent role in this pandemic, and especially TCM with the function of "heat-clearing and detoxifying" has shown an excellent role in anti-virus. Fufang Shuanghua oral liquid (FFSH) has been used to treat the corresponding symptoms of influenza such as fever, nasal congestion, runny nose, sore throat, and upper respiratory tract infections in clinic, which are typical symptoms of COVID-19. The content of chlorogenic acid, andrographolide and dehydrated andrographolide as the quality control components of FFSH is not less than 1.0 mg/mL, 60 µg/mL and 60 µg/mL respectively. In this study, UPLC-Q-TOF-MS/MS was employed to describe the chemical profile of FFSH. Virtual screening and fluorescence resonance energy transfer (FRET) were used to screen the effective components of FFSH acting on SARS-CoV-2 main protease (Mpro). As a result, 214 compounds in FFSH were identified or preliminarily characterized by UPLC-Q-TOF-MS/MS, and 61 active ingredients with potential inhibitory effects on Mpro were selected through receptor-based and ligand-based virtual screening. In particular, quercetin, forsythoside A, and linoleic acid showed a good inhibitory effect on Mpro in FRET evaluation with IC50 values of 26.15 µM, 22.26 µM and 47.09 µM respectively, and had a strong binding affinity with the receptor Mpro (6LU7) in molecular docking. CYS145 and HIS41 were the main amino acid residues affected by small molecules in the protein binding domain. In brief, we characterized, for the first time, 214 chemical components in FFSH, and three of them, including quercetin, forsythoside A and linoleic acid, were screened out to exert beneficial anti-COVID-19 effects through CYS145 and HIS41 sites, which may provide a new research strategy for TCM to develop new therapeutic drugs against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Quercetina/farmacología , Espectrometría de Masas en Tándem , Ácido Linoleico , Proteínas no Estructurales Virales , Inhibidores de Proteasas/farmacología
4.
RSC Adv ; 10(31): 18044-18053, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35517205

RESUMEN

Acetaminophen (APAP)-induced acute liver injury (ALI) is a health issue that has gradually attracted attention, and is often regarded as a model of drug-induced hepatotoxicity. The leaves of Lithocarpus polystachyus Rehd. (named as "sweet tea", ST) usually serve as tea drink and folk medicine for healthcare in the southwest part of China. In previous reports, it has been proven to protect various animal models, except for APAP-induced liver injury model. Therefore, this study initially explored the protective effect of ST leaf extract (STL-E) on hepatotoxicity induced by APAP in ICR mice. STL-E of 50 and 100 mg kg-1 were given to each group for 7 days. ALI was intraperitoneally induced by APAP treatment (i.p. 250 mg per kg body weight). Biochemical markers, levels of inflammatory factors, histopathological staining and western blotting were used to analyze the inflammation and apoptosis of liver tissues. Interestingly, the treatment with STL-E significantly attenuated APAP-induced liver injury (p < 0.05). Moreover, STL-E partially mitigated APAP-induced liver injury by effectively activating the PI3K/Akt pathway and inhibiting the NF-κB pathway. In a word, STL-E protected liver against APAP-induced hepatotoxicity by inhibiting the PI3K/Akt-mediated apoptosis signal pathway and inhibiting the NF-κB-mediated signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA