Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 74, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485915

RESUMEN

Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.

2.
J Integr Med ; 21(5): 474-486, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453868

RESUMEN

OBJECTIVE: Jiedu Recipe (JR), a Chinese herbal remedy, has been shown to prolong overall survival time and decrease recurrence and metastasis rates in patients with hepatocellular carcinoma (HCC). This work investigated the mechanism of JR in HCC treatment. METHODS: The chemical constituents of JR were detected using liquid chromatography-mass spectrometry. The potential anti-HCC mechanism of JR was screened using network pharmacology and messenger ribonucleic acid (mRNA) microarray chip assay, followed by experimental validation in human HCC cells (SMMC-7721 and Huh7) in vitro and a nude mouse subcutaneous transplantation model of HCC in vivo. HCC cell characteristics of proliferation, migration and invasion under hypoxic setting were investigated using thiazolyl blue tetrazolium bromide, wound healing and Transwell assays, respectively. Image-iT™ Hypoxia Reagent was added to reveal hypoxic conditions. Stem cell sphere formation assay was used to detect the stemness. Epithelial-mesenchymal transition (EMT) markers like E-cadherin, vimentin and α-smooth muscle actin, and pluripotent transcription factors including nanog homeobox, octamer-binding transcription factor 4, and sex-determining region Y box protein 2 were analyzed using Western blotting and real-time polymerase chain reaction. Western blot was performed to ascertain the anti-HCC effect of JR under hypoxia involving the Wnt/ß-catenin pathway. RESULTS: According to network pharmacology and mRNA microarray chip analysis, JR may potentially act on hypoxia and inhibit the Wnt/ß-catenin pathway. In vitro and in vivo experiments showed that JR significantly decreased hypoxia, and suppressed HCC cell features of proliferation, migration and invasion; furthermore, the hypoxia-induced increases in EMT and stemness marker expression in HCC cells were inhibited by JR. Results based on the co-administration of JR and an agonist (LiCl) or inhibitor (IWR-1-endo) verified that JR suppressed HCC cancer stem-like properties under hypoxia by blocking the Wnt/ß-catenin pathway. CONCLUSION: JR exerts potent anti-HCC effects by inhibiting cancer stemness via abating the Wnt/ß-catenin pathway under hypoxic conditions. Please cite this article as: Guo BJ, Ruan Y, Wang YJ, Xiao CL, Zhong ZP, Cheng BB, Du J, Li B, Gu W, Yin ZF. Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in hepatocellular carcinoma via Wnt/ß-catenin pathway under hypoxia. J Integr Med. 2023; 21(5): 474-486.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , ARN Mensajero/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
3.
J Integr Med ; 21(2): 184-193, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36781361

RESUMEN

OBJECTIVE: Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness. METHODS: A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3ß (GSK-3ß)/ß-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3ß/ß-catenin signaling pathway was detected. RESULTS: Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3ß/ß-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3ß/ß-catenin signaling pathway were also inhibited in cells treated with serum from swimming group. CONCLUSION: Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3ß/ß-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3ß/ß-catenin pathway. J Integr Med. 2023; 21(2): 184-193.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antígeno Nuclear de Célula en Proliferación/uso terapéutico , Ratones Desnudos , Glucógeno Sintasa Quinasa 3 beta/genética , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Desmina/uso terapéutico , Antígeno Ki-67 , Línea Celular Tumoral , Hipoxia , ARN Mensajero/uso terapéutico , Proliferación Celular
4.
Nat Comput Sci ; 3(10): 839-848, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38177757

RESUMEN

Gaussian boson sampling (GBS) has the potential to solve complex graph problems, such as clique finding, which is relevant to drug discovery tasks. However, realizing the full benefits of quantum enhancements requires large-scale quantum hardware with universal programmability. Here we have developed a time-bin-encoded GBS photonic quantum processor that is universal, programmable and software-scalable. Our processor features freely adjustable squeezing parameters and can implement arbitrary unitary operations with a programmable interferometer. Leveraging our processor, we successfully executed clique finding on a 32-node graph, achieving approximately twice the success probability compared to classical sampling. As proof of concept, we implemented a versatile quantum drug discovery platform using this GBS processor, enabling molecular docking and RNA-folding prediction tasks. Our work achieves GBS circuitry with its universal and programmable architecture, advancing GBS toward use in real-world applications.


Asunto(s)
Lesiones Accidentales , Humanos , Simulación del Acoplamiento Molecular , Descubrimiento de Drogas , Distribución Normal , Fotones
5.
Acta Physiologica Sinica ; (6): 33-40, 2017.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-331596

RESUMEN

Senescence-associated secretory phenotype (SASP) is often a concomitant result of cell senescence, embodied by the enhanced function of secretion. The SASP factors secreted by senescent cells include cytokines, proteases and chemokines, etc, which can exert great influence on local as well as systemic environment and participate in the process of cell senescence, immunoregulation, angiogenesis, cell proliferation and tumor invasion, etc. Relative to the abundance of SASP models in human cells, the in vitro SASP model derived from mouse cells is scarce at present. Therefore, the study aimed to establish a mouse SASP model to facilitate the research in the field. With this objective, we treated the INK4a-deficient mouse NIH-3T3 cells and the wildtype mouse embryonic fibroblasts (MEF) respectively with mitomycin C (MMC), an anticarcinoma drug which could induce DNA damage. The occurring of cell senescence was evaluated by cell morphology, β-gal staining, integration ratio of EdU and Western blot. Quantitative RT-PCR and ELISA were used to detect the expression and secretion of SASP factors, respectively. The results showed that, 8 days after the treatment of NIH-3T3 cells with MMC (1 μg/mL) for 12 h or 24 h, the cells became enlarged and the ratios of β-gal-positive (blue-stained) cells significantly increased, up to 77.4% and 90.4%, respectively. Meanwhile, the expression of P21 protein increased and the integration ratios of EdU significantly decreased (P < 0.01). Quantitative RT-PCR detection showed that the mRNA levels of several SASP genes, including IL-6, TNF-α, IL-1α and IL-1β increased evidently. ELISA detection further observed an enhanced secretion of IL-6 (P < 0.01). On the contrary, although wildtype MEF could also be induced into senescence by MMC treatment for 12 h or 24 h, embodied by the enlarged cell volume, increased ratios of β-gal-positive cells (up to 71.7% and 80.2%, respectively) and enhanced expression of P21 protein, the secretion of IL-6 displayed no significant change. Our study indicated that, although MMC could induce senescence in both mouse NIH-3T3 cells and wildtype MEF, only senescent NIH-3T3 cells displayed the canonical SASP phenomena. Current study suggested that senescent NIH-3T3 cells might be an appropriate in vitro SASP model of mouse cells.


Asunto(s)
Animales , Ratones , Proliferación Celular , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Genética , Metabolismo , Citocinas , Genética , Metabolismo , Daño del ADN , Fibroblastos , Interleucina-6 , Secreciones Corporales , Mitomicina , Farmacología , Células 3T3 NIH , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...