Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(19): 28594-28619, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558347

RESUMEN

Appropriate landscape configurations significantly mitigate rural thermal degradation. However, limited research exists on seasonal thermal comfort and the interconnections among landscape elements. Using ENVI-met software and field measurements, this study analyzed the microclimate of Dayuwan Village Square in Wuhan City. Fifteen design scenarios, including tree planting, building greening, albedo adjustment, and expanded tree coverage, were quantitatively evaluated to assess their impact on outdoor thermal comfort. Additionally, synergistic interactions between mitigation strategies were explored. The study found that increasing evergreen tree coverage by 50% has minimal impact on comfort during winter and spring. However, it significantly reduces temperatures in summer and autumn, resulting in average predicted mean vote (PMV) decreases of 0.315 and 0.643, respectively. Additionally, this strategy optimizes PMV values at 18:00 on extreme days, with a 0.102 decrease in summer and a 0.002 increase in winter. This research offers practical and sustainable guidance to designers for enhancing mitigation effects through optimal landscape configuration, providing a technical framework for rural environmental improvements.


Asunto(s)
Estaciones del Año , China , Temperatura , Ciudades , Árboles , Microclima
2.
Int J Lab Hematol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516736

RESUMEN

Pseudo-Chediak-Higashi granules are large cytoplasmic inclusions commonly encountered in myeloblasts or other myeloid precursors in acute myeloid leukemia and myelodysplastic syndromes. However, pseudo-Chediak-Higashi granules are rarely found in acute lymphoblastic leukemia (ALL). We present the case of an 8-year-old boy who was diagnosed with ALL with pseudo-Chediak-Higashi granules in the initial diagnosis and relapse, acting like a characteristic marker.

3.
Adv Sci (Weinh) ; 11(14): e2308345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311577

RESUMEN

Peptides with suitable aggregation behavior and electrical properties are potential siRNA delivery vectors. However, identifying suitable peptides with ideal delivery and safety features is difficult owing to the variations in amino acid sequences. Here, a holistic program based on computer modeling and single-cell RNA sequencing (scRNA-seq) is used to identify ideal siRNA delivery peptides. Stage one of this program consists of a sequential screening process for candidates with ideal assembly and delivery ability; stage two is a cell subtype-level analysis program that screens for high in vivo tissue safety. The leading candidate peptide selected from a library containing 12 amino acids showed strong lung-targeted siRNA delivery capacity after hydrophobic modification. Systemic administration of these compounds caused the least damage to liver and lung tissues and has little impact on macrophage and neutrophil numbers. By loading STAT3 siRNA, strong anticancer effects are achieved in multiple models, including patient-derived xenografts (PDX). This screening procedure may facilitate the development of peptide-based RNA interference (RNAi) therapeutics.


Asunto(s)
Pulmón , Péptidos , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Péptidos/metabolismo , Interferencia de ARN , Pulmón/metabolismo , Computadores
4.
Nucleic Acids Res ; 52(D1): D98-D106, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953349

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as crucial regulators across diverse biological processes and diseases. While high-throughput sequencing has enabled lncRNA discovery, functional characterization remains limited. The EVLncRNAs database is the first and exclusive repository for all experimentally validated functional lncRNAs from various species. After previous releases in 2018 and 2021, this update marks a major expansion through exhaustive manual curation of nearly 25 000 publications from 15 May 2020, to 15 May 2023. It incorporates substantial growth across all categories: a 154% increase in functional lncRNAs, 160% in associated diseases, 186% in lncRNA-disease associations, 235% in interactions, 138% in structures, 234% in circular RNAs, 235% in resistant lncRNAs and 4724% in exosomal lncRNAs. More importantly, it incorporated additional information include functional classifications, detailed interaction pathways, homologous lncRNAs, lncRNA locations, COVID-19, phase-separation and organoid-related lncRNAs. The web interface was substantially improved for browsing, visualization, and searching. ChatGPT was tested for information extraction and functional overview with its limitation noted. EVLncRNAs 3.0 represents the most extensive curated resource of experimentally validated functional lncRNAs and will serve as an indispensable platform for unravelling emerging lncRNA functions. The updated database is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs3/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Largo no Codificante , Manejo de Datos , Almacenamiento y Recuperación de la Información , ARN Largo no Codificante/genética
5.
MedComm (2020) ; 4(6): e416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38020719

RESUMEN

Studies have shown that antidiabetic drugs can alter the gut microbiota. The hypoglycemic effects of the drugs can be attributed in part to certain species in the gut microbiome that help the drugs work more effectively. In addition, increasing energy expenditure via the induction of adipose tissue browning has become an appealing strategy to treat obesity and associated metabolic complications. Currently, glucagon-like peptide-1 receptor agonist (GLP-1 RA) treatment for metabolic disorders such as obesity and type 2 diabetes has been widely studied. To determine the mechanism of a long-acting GLP-1 RA affects adipose tissue browning and the gut microbiome, we treated high-fat diet mice with GLP-1 RA and demonstrated that the drug can regulate adipose tissue browning. 16S rRNA and untargeted metabolomics assays suggested that it increased the abundance of bacterium Lactobacillus reuteri and decreased serum ceramide levels in mice. L. reuteri was negatively correlated with ceramide. We found that the mechanism of ceramide decline was alkaline ceramidase 2 (Acer2) overexpression. Moreover, L. reuteri can play a therapeutic synergistic role with GLP-1 RA, suggesting that gut microbiota can be used as a part of the treatment of diabetes.

6.
Signal Transduct Target Ther ; 8(1): 436, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38016957

RESUMEN

Despite the remarkable success of immune checkpoint inhibitors (ICIs), primary resistance to ICIs causes only subsets of patients to achieve durable responses due to the complex tumor microenvironment (TME). Oncolytic viruses (OVs) can overcome the immunosuppressive TME and promote systemic antitumor immunity in hosts. Engineered OVs armed with ICIs would likely have improved effectiveness as a cancer therapy. According to the diverse immune cell landscapes among different types of tumors, we rationally and precisely generated three recombinant oncolytic adenoviruses (OAds): OAd-SIRPα-Fc, OAd-Siglec10-Fc and OAd-TIGIT-Fc. These viruses were designed to locally deliver SIRPα-Fc, Siglec10-Fc or TIGIT-Fc fusion proteins recognizing CD47, CD24 or CD155, respectively, in the TME to achieve enhanced antitumor effects. Our results suggested that OAd-SIRPα-Fc and OAd-Siglec10-Fc both showed outstanding efficacy in tumor suppression of macrophage-dominated tumors, while OAd-TIGIT-Fc showed the best antitumor immunity in CD8+ T-cell-dominated tumors. Importantly, the recombinant OAds activated an inflammatory immune response and generated long-term antitumor memory. In addition, the combination of OAd-Siglec10-Fc with anti-PD-1 significantly enhanced the antitumor effect in a 4T1 tumor model by remodeling the TME. In summary, rationally designed OAds expressing ICIs tailored to the immune cell landscape in the TME can precisely achieve tumor-specific immunotherapy of cancer.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Adenoviridae/genética , Virus Oncolíticos/genética , Neoplasias/genética , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Receptores Inmunológicos/genética , Microambiente Tumoral/genética
7.
Adv Sci (Weinh) ; 10(31): e2207697, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37740439

RESUMEN

In situ vaccination is a desirable strategy for cancer immunotherapy due to its convenience and capacity to target tumor antigens. Here, an in situ nanovaccine based on a cationic peptide with cholesterol-modified, DP7-C, for cancer immunotherapy is rationally designed, and developed a cancer nanovaccine that is easy to preparate. The nanovaccine includes cocktail small interfering RNAs (siRNAs) and immunologic adjuvant CpG ODNs, has synergistic effect in the cancer treatment. This nanovaccine can induce tumor cell death, promote antigen presentation and relieve immune suppression in the tumor microenvironment (TME). Moreover, this nanovaccine is administered to CT26 (hot) and B16F10 (cold) tumor model mice, in which it targeted the primary tumors and induced systemic antitumor immunity to inhibit metastasis. It is validated that the nanovaccine can convert cold tumors into hot tumors. Furthermore, the nanovaccine increased the immune response to anti-PD-1 therapy by modulating the TME in both CT26- and B16F10-tumor-bearing mice. The siRNA cocktail/CpG ODN/self-assembling peptide nanovaccine is a simple and universal tool that can effectively generate specific tumor cell antigens and can be combined with immuno-oncology agents to enhance antitumor immune activity. The versatile methodology provides an alternative approach for developing cancer nanovaccines.


Asunto(s)
Inmunoterapia , Neoplasias , Ratones , Animales , Inmunoterapia/métodos , Neoplasias/terapia , Antígenos de Neoplasias , Adyuvantes Inmunológicos , Péptidos , Microambiente Tumoral
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 980-984, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37551465

RESUMEN

OBJECTIVE: To analyze 43 leukemia genes in children with acute lymphoblastic leukemia (ALL) in Yunnan province, and provide the basis for the diagnosis and treatment of children with ALL in this area. METHODS: The clinical data of 428 children with newly diagnosed ALL in Yunnan area from January 2015 to December 2020 were retrospectively analyzed. Multiple nested PCR technology was used to detect 43 common leukemia genes. RESULTS: Among the 428 children with ALL, 159 were positive for leukemia genes, with a positive rate of 37.15% (159/428), and a total of 15 leukemia genes were detected. Among the 159 leukemia gene-positive children, ETV6-RUNX1+ accounted for 25.79% (41/159), followed by E2A-PBX1+ and BCR-ABL+, accounting for 24.53% (39/159) and 23.27% (37/159) respectively. MLL+ accounted for 6.29% (10/159), WT1+ accounted for 4.40% (7/159), IKZF1 gene deletion and CRLF2+ accounted for 3.77% (6/159) respectively. The positive rate of MLL (46.15%) was the highest in <1-year old group, the positive rate of ETV6-RUNX1 (10.56%) was the highest in 1-10-year old group, and BCR-ABL+ rate (23.65%) was the highest in >10-year old group. The distribution of leukemia genes in different age groups was statistically significant (P <0.05). CONCLUSION: The most common fusion gene of children with ALL in Yunnan is ETV6-RUNX1, followed by E2A-PBX1 and BCR-ABL.


Asunto(s)
Proteínas de Fusión Oncogénica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Lactante , Preescolar , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión bcr-abl/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Estudios Retrospectivos , China , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Genotipo
9.
J Cachexia Sarcopenia Muscle ; 14(5): 2275-2288, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591518

RESUMEN

BACKGROUND: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear. METHODS: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model. RESULTS: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P < 0.001). The LPC mice had significantly longer wire and grid hanging time (P < 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P < 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P < 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass. CONCLUSIONS: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.

10.
Plants (Basel) ; 12(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37447143

RESUMEN

FAR1-RELATED SEQUENCE (FRS) transcription factors are generated by transposases and play vital roles in plant growth and development, light signaling transduction, phytohormone response, and stress resistance. FRSs have been described in various plant species. However, FRS family members and their functions remain poorly understood in vegetative crops such as potato (Solanum tuberosum, St). In the present study, 20 putative StFRS proteins were identified in potato via genome-wide analysis. They were non-randomly localized to eight chromosomes and phylogenetic analysis classified them into six subgroups along with FRS proteins from Arabidopsis and tomato. Conserved protein motif, protein domain, and gene structure analyses supported the evolutionary relationships among the FRS proteins. Analysis of the cis-acting elements in the promoters and the expression profiles of StFRSs in various plant tissues and under different stress treatments revealed the spatiotemporal expression patterns and the potential roles of StFRSs in phytohormonal and stress responses. StFRSs were differentially expressed in the cultivar "Xisen 6", which is exposed to a variety of stresses. Hence, these genes may be critical in regulating abiotic stress. Elucidating the StFRS functions will lay theoretical and empirical foundations for the molecular breeding of potato varieties with high light use efficiency and stress resistance.

11.
Pol J Microbiol ; 72(2): 125-131, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37144671

RESUMEN

The present study aimed to determine the capsular serotype distribution and antimicrobial drug resistance patterns of Haemophilus influenzae from children in the Kunming region of China. This information could guide policymakers in clinical treatment. In the present study, H. influenzae isolates were tested for their serotypes, antimicrobial susceptibility pattern, and presence of ß-lactamases. One-hundred forty-eight H. influenzae strains isolated from children 0-2 years old were investigated for capsular types by glass slide agglutination and molecular methods, and biotyped by the biochemical reactions. The drug resistance-encoding genes TEM-1, ROB-1, and the ftsI gene mutations PBP3-3, and PBP3-BLN were detected with real-time quantitative polymerase chain reaction (qPCR). The prevalence of ß-lactamase-producing strains (60.3%) was significantly higher (p < 0.05) than non-enzyme-producing strains. ß-Lactamase-producing strains were multidrug resistant to various antibiotics such as ampicillin, tetracycline, sulfamethoxazole/trimethoprim, chloramphenicol, cefuroxime, and cefaclor. Among ß-lactamase-producing strains, the detection rates of the TEM-1, PBP3-BLN, PBP3-s, and ROB-1 were 54.1%, 18.9%, 11.8%, and 6.9%, respectively. The biotyping results show that most H. influenzae strains were of type II and III. Non-typeable H. influenzae (NTHi) accounted for 89.3% of the strains. NTHi strains were the most prevalent in this region; most belonged to biological types II and III. ß-Lactamase-positive ampi-cillin-resistant (BLPAR) strains were prevalent among H. influenzae isolates in this region.


Asunto(s)
Infecciones por Haemophilus , Haemophilus influenzae , Niño , Humanos , Recién Nacido , Lactante , Preescolar , Serogrupo , Haemophilus influenzae/genética , Infecciones por Haemophilus/tratamiento farmacológico , Infecciones por Haemophilus/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana , Resistencia a Medicamentos
12.
Adv Sci (Weinh) ; 10(15): e2300116, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36950751

RESUMEN

The clinical efficacy of personalized cancer vaccines still needs to be improved due to their insufficient immune effect. The development of innovative adjuvants and lymph node-targeted delivery systems is the key to improving the clinical efficacy of personalized vaccines. However, there is still a lack of an adjuvant delivery system that is simple in preparation and capable of mass production and integrates adjuvant and lymph node targeted delivery functions. Here, this work reports that a simple dendrimer polypeptide (KK2DP7) nanoparticle enhances the immune efficacy of an OVA/neoantigen-based vaccine. Due to its multiple functions as a delivery vehicle, immune adjuvant, and facilitator of dendritic cell migration, KK2DP7 efficiently increases the efficiency of antigen uptake and cross-presentation by antigen-presenting cells (APCs) and delivers antigens to lymph nodes via APCs. Strikingly, the antitumor effect of KK2DP7/OVA is superior to that of commonly used adjuvants such as poly(I:C), CpG, and aluminum adjuvant combined with OVA. Furthermore, KK2DP7/OVA combined with anti-PD-1 antibody is able to prevent tumor recurrence in a postoperative recurrent tumor model. Thus, KK2DP7-based cancer vaccines alone or in combination with immune checkpoint blockade therapies to treat tumors or postoperative tumor recurrence are a powerful strategy to enhance antitumor immunity.


Asunto(s)
Vacunas contra el Cáncer , Dendrímeros , Humanos , Recurrencia Local de Neoplasia , Adyuvantes Inmunológicos , Inmunoterapia , Antígenos , Péptidos , Ganglios Linfáticos
13.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36573492

RESUMEN

Long non-coding RNAs (lncRNAs) played essential roles in nearly every biological process and disease. Many algorithms were developed to distinguish lncRNAs from mRNAs in transcriptomic data and facilitated discoveries of more than 600 000 of lncRNAs. However, only a tiny fraction (<1%) of lncRNA transcripts (~4000) were further validated by low-throughput experiments (EVlncRNAs). Given the cost and labor-intensive nature of experimental validations, it is necessary to develop computational tools to prioritize those potentially functional lncRNAs because many lncRNAs from high-throughput sequencing (HTlncRNAs) could be resulted from transcriptional noises. Here, we employed deep learning algorithms to separate EVlncRNAs from HTlncRNAs and mRNAs. For overcoming the challenge of small datasets, we employed a three-layer deep-learning neural network (DNN) with a K-mer feature as the input and a small convolutional neural network (CNN) with one-hot encoding as the input. Three separate models were trained for human (h), mouse (m) and plant (p), respectively. The final concatenated models (EVlncRNA-Dpred (h), EVlncRNA-Dpred (m) and EVlncRNA-Dpred (p)) provided substantial improvement over a previous model based on support-vector-machines (EVlncRNA-pred). For example, EVlncRNA-Dpred (h) achieved 0.896 for the area under receiver-operating characteristic curve, compared with 0.582 given by sequence-based EVlncRNA-pred model. The models developed here should be useful for screening lncRNA transcripts for experimental validations. EVlncRNA-Dpred is available as a web server at https://www.sdklab-biophysics-dzu.net/EVlncRNA-Dpred/index.html, and the data and source code can be freely available along with the web server.


Asunto(s)
Aprendizaje Profundo , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Biología Computacional/métodos , Programas Informáticos , Algoritmos , ARN Mensajero/genética
14.
Front Plant Sci ; 14: 1320976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235210

RESUMEN

Introduction: Continuous identification and application of novel resistance genes against stripe rust are of great importance for wheat breeding. Wild emmer wheat, Triticum dicoccoides, has adapted to a broad range of environments and is a valuable genetic resource that harbors important beneficial traits, including resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). However, there has been a lack of systematic exploration of genes against Pst races in wild emmer wheat. Methods: Genome-wide transcriptome profiles were conducted on two wild emmer wheat genotypes with different levels of resistance to (Pst (DR3 exhibiting moderate (Pst resistance, and D7 displaying high (Pst resistance). qRT-PCR was performed to verify findings by RNA-seq. Results: A higher number of DEGs were identified in the moderately (Pst-resistant genotype, while the highly (Pst-resistant genotype exhibited a greater enrichment of pathways. Nonetheless, there were consistent patterns in the enrichment of pathways between the two genotypes at the same time of inoculation. At 24 hpi, a majority of pathways such as the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, phenylalanine metabolism, and alpha-Linolenic acid metabolism exhibited significant enrichment in both genotypes. At 72 hpi, the biosynthesis of secondary metabolites and circadian rhythm-plant pathways were notably and consistently enriched in both genotypes. The majority of (WRKY, MADs , and AP2-ERF families were found to be involved in the initial stage of response to Pst invasion (24 hpi), while the MYB, NAC, TCP, and b-ZIP families played a role in defense during the later stage of Pst infection (72 hpi). Discussion: In this present study, we identified numerous crucial genes, transcription factors, and pathways associated with the response and regulation of wild emmer wheat to Pst infection. Our findings offer valuable information for understanding the function of crucial Pst-responsive genes, and will deepen the understanding of the complex resistance mechanisms against Pst in wheat.

15.
Cell Regen ; 11(1): 39, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36319799

RESUMEN

Intestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9+ progenitors by activating the Wnt/ß-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.

16.
Adv Med Sci ; 67(1): 103-113, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35121283

RESUMEN

PURPOSE: With the increasing incidence of thyroid cancer (TC), the prognostic risk assessment of thyroid cancer has been becoming more and more important. The aim of this study was to screen TC-related biomarkers and identify key multi-long non coding RNA (lncRNA) signature for prognostic risk assessment of papillary TC. MATERIAL AND METHODS: The lncRNAs differentially expressed between TC tissue and adjacent normal tissue was identified by R language. Bioinformatics analysis was applied to screen the lncRNAs significantly associated with prognosis in TC patients and build the multi-lncRNA signature. The lncRNAs were annotated by co-expression and enrichment analysis to demonstrate the underlying mechanism of their effect on prognosis. RESULTS: 285 up-regulated and 174 down-regulated differently expressed lncRNAs were identified. Based on seven signature lncRNAs (AL591846.2, AC253536.3, AC004112.1, LINC00900, AC008555.1, TNRC6C-AS1, LINC01736) a prognostic risk assessment model was built. The model can segregate the patients into the high-risk and low-risk groups (P value <0.0001, CI: 0.02∼0.14). ROC analysis revealed that the area under the curve reached 0.86, indicating that this model had an excellent sensitivity and specificity. Also, the model could act as an independent prognostic indication (HR â€‹= â€‹2.90, P value â€‹= â€‹0.0094 with multivariate analysis). Annotation results further supported and enriched our understanding of the seven signature lncRNAs. Importantly, expression levels of three of the seven lncRNAs were confirmed in Gene Expression Omnibus (GEO) data. CONCLUSIONS: This study has provided a promising method for the prognostic risk assessment in patients with TC.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Tiroides , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Pronóstico , ARN Largo no Codificante/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética
17.
Pharmaceutics ; 14(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35057057

RESUMEN

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases worldwide, causing severe cartilage damage and disability. Despite the recent progress made in RA treatment, limitations remain in achieving early and efficient therapeutic intervention. Advanced therapeutic strategies are in high demand, and siRNA-based therapeutic technology with a gene-silencing ability represents a new approach for RA treatment. In this study, we created a cationic delivery micelle consisting of low-molecular-weight (LMW) polyethylenimine (PEI)-cholesterol-polyethylene glycol (PEG) (LPCE) for small interfering RNA (siRNA)-based RA gene therapy. The carrier is based on LMW PEI and modified with cholesterol and PEG. With these two modifications, the LPCE micelle becomes multifunctional, and it efficiently delivered siRNA to macrophages with a high efficiency greater than 70%. The synthesized LPCE exhibits strong siRNA protection ability and high safety. By delivering nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 siRNA, the p65 siRNA/LPCE complex efficiently inhibited macrophage-based cytokine release in vitro. Local administration of the p65 siRNA/LPCE complex exhibited a fast and potent anti-inflammatory effect against RA in a mouse model. According to the results of this study, the functionalized LPCE micelle that we prepared has potential gene therapeutic implications for RA.

18.
J Control Release ; 342: 66-80, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973309

RESUMEN

Gliomas are the most malignant brain tumors, and their treatment is very challenging because of the presence of the blood-brain barrier (BBB). Intranasal administration has been considered a noninvasive strategy for glioma therapy in recent years, but our explorations of the intranasal delivery of siRNA-based therapies are still clearly inadequate. In this study, the cell-penetrating peptide DP7-C was enveloped with hyaluronic acid (HA) to develop the multifunctional core-shell structure nanomicelle HA/DP7-C. In vitro studies of HA/DP7-C revealed low cytotoxicity and a higher cell uptake efficiency, which was associated with the interaction between HA and CD44. In vivo experiments indicated that HA/DP7-C delivered the siRNA to the central nervous system through the trigeminal nerve pathway within hours after intranasal administration and that the interaction between HA and CD44 also increased its accumulation at the tumor site. Successful intracellular delivery of an antiglioma siRNA inhibited tumor growth and ultimately prolonged the survival time and decreased the tumor volume in GL261 tumor-bearing mice. In addition, toxicity tests on rats showed no adverse effects on the nasal mucosa and trigeminal nerves. In conclusion, HA/DP7-C is a potential intranasal delivery system for siRNAs in glioma therapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/genética , Ácido Hialurónico/química , Ratones , ARN Interferente Pequeño , Ratas
19.
Front Microbiol ; 13: 1015130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590441

RESUMEN

Methotrexate (MTX) is a preferred disease-modifying anti-rheumatic drug in the management of rheumatoid arthritis (RA). However, the toxicity and inefficiency of MTX limit its clinical application. Gut microbiota has been implicated in the side effects and efficacy of MTX. In this study, the analysis of the gut microbiota in RA patients revealed that the abundances of intestinal Bacteroides fragilis was reduced after MTX treatment. We observed that MTX has no obvious therapeutic effect in the absence of B. fragilis, while transplantation of B. fragilis restored the efficacy of MTX in antibiotics-pretreated collagen-induced arthritis (CIA) mice. In addition, B. fragilis gavage was accompanied by an increase in butyrate. Supplementation of butyrate restored the response to MTX in gut microbiota-deficient mice, to a similar level achieved by B. fragilis gavage. These results show that gut microbiota-regulated butyrate plays an essential role in the efficacy of MTX, which will provide new strategies to improve the effectiveness of methotrexate in RA treatment.

20.
Front Microbiol ; 12: 645500, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712207

RESUMEN

Rituximab (RTX) is a widely used anticancer drug with gastrointestinal side effects, such as nausea, vomiting, and diarrhea. The reason for these side effects is still poorly understood. Previous studies have reported that the intestinal microbiota is associated with the occurrence of disease and the therapeutic effect of drugs. In this study, we observed mucosal damage, inflammatory cell infiltration and increased intestinal inflammatory factor expression in RTX-treated mice. RTX also changed the diversity of the intestinal microbiota in mice, and decreased abundance of Lactobacillus reuteri was observed in RTX-treated mice. Further experiments revealed that intragastric administration of L. reuteri in RTX-treated mice attenuated the intestinal inflammatory response induced by RTX and regulated the proportion of helper T (Th) cells. In conclusion, our data characterize the effect of the intestinal microbiota on RTX-induced intestinal inflammation, suggesting that modifying the gut microbiota may represent a positive strategy for managing adverse reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...