Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 40(8): 111239, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001982

RESUMEN

Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine hormone that functions to regulate energy homeostasis and macronutrient intake. Recently, FGF21 was reported to be produced and secreted from hypothalamic tanycytes, to regulate peripheral lipid metabolism; however, rigorous investigation of FGF21 expression in the brain has yet to be accomplished. Using a mouse model that drives CRE recombinase in FGF21-expressing cells, we demonstrate that FGF21 is not expressed in the hypothalamus, but instead is produced from the retrosplenial cortex (RSC), an essential brain region for spatial learning and memory. Furthermore, we find that central FGF21 produced in the RSC enhances spatial memory but does not regulate energy homeostasis or sugar intake. Finally, our data demonstrate that administration of FGF21 prolongs the duration of long-term potentiation in the hippocampus and enhances activation of hippocampal neurons. Thus, endogenous and pharmacological FGF21 appear to function in the hippocampus to enhance spatial memory.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Hígado , Animales , Metabolismo Energético/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis/fisiología , Hígado/metabolismo , Ratones , Ratones Noqueados
2.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108517

RESUMEN

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Estudio de Asociación del Genoma Completo , Consumo de Bebidas Alcohólicas , Animales , Sistema Endocrino/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo
3.
Mol Metab ; 55: 101405, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844020

RESUMEN

OBJECTIVE: Uncoupling protein 1 (UCP1) is a mitochondrial protein critical for adaptive thermogenesis in adipose tissues, and it is typically believed to be restricted to thermogenic adipose tissues. UCP1-Cre transgenic mice are utilized in numerous studies to provide "brown adipose-specific" conditional gene targeting. Here, we examined the distribution of Cre and UCP1 throughout the body in UCP1-Cre reporter mice. METHODS: UCP1-Cre mice crossed to Ai14-tdTomato and Ai9-tdTomato reporter mice were used to explore the tissue distribution of Cre recombinase and Ucp1 mRNA in various tissues. UCP1-Cre mice were independently infected with either a Cre-dependent PHP.eB-tdTomato virus or a Cre-dependent AAV-tdTomato virus to determine whether and where UCP1 is actively expressed in the adult central nervous system. In situ analysis of the deposited single cell RNA sequencing data was used to evaluate Ucp1 expression in the hypothalamus. RESULTS: As expected, Ucp1 expression was detected in both brown and inguinal adipose tissues. Ucp1 expression was also detected in the kidney, adrenal glands, thymus, and hypothalamus. Consistent with detectable Ucp1 expression, tdTomato expression was also observed in brown adipose tissue, inguinal white adipose tissue, kidney, adrenal glands, and hypothalamus of both male and female UCP1-Cre; Ai14-tdTomato and UCP1-Cre; Ai9-tdTomato mice by fluorescent imaging and qPCR. Critically, expression of tdTomato, and thus UCP1, within the central nervous system was observed in regions of the brain critical for the regulation of energy homeostasis, including the ventromedial hypothalamus (VMH). CONCLUSIONS: TdTomato expression in UCP1-Cre; tdTomato mice is not restricted to thermogenic adipose tissues. TdTomato was also expressed in the kidneys, adrenal glands, and throughout the brain, including brain regions and cell types that are critical for multiple aspects of central regulation of energy homeostasis. Collectively, these data have important implications for the utility of UCP1-Cre mice as genetic tools to investigate gene function specifically in brown adipose tissue.


Asunto(s)
Marcación de Gen/métodos , Termogénesis/fisiología , Proteína Desacopladora 1/genética , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Regulación de la Temperatura Corporal/genética , Regulación de la Temperatura Corporal/fisiología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Mensajero/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Innovations (Phila) ; 6(4): 253-6, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22437984

RESUMEN

OBJECTIVE: The placement of epicardial pacing wires before weaning from bypass during port-access heart surgery can be difficult or impossible. Sometimes, it is necessary to pacing the patient to wean from bypass, and it is problematic to exchange the Edwards pulmonary vent (EndoVent) for a pace catheter under the drapes. Our objective was to devise an effective means of pacing the patient using the pulmonary vent catheter. METHODS: All patients having aortic valve minimally invasive port-access surgery have a pacing wire deployed through the Edwards EndoVent catheter. We did a retrospective chart analysis of these cases. RESULTS: After reviewing the anesthesia records, we determined that we were able to reliably convert the pulmonary vent catheter, which is beneficial for the surgery, into a pacing catheter before weaning from bypass 100% of the time. The mean pacing threshold current was 1.60 mA with the wire in the right ventricular apex. CONCLUSIONS: We found that in all 25 patients we were able to rapidly convert the vent catheter into a reliable pacing catheter without any complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...