Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(3): nwae021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38410827

RESUMEN

The cell nucleus is the main site for the storage and replication of genetic material, and the synthesis of substances in the nucleus is rhythmic, regular and strictly regulated by physiological processes. However, whether exogenous substances, such as nanoparticles, can be synthesized in situ in the nucleus of live cells has not been reported. Here, we have achieved in-situ synthesis of CdSxSe1-x quantum dots (QDs) in the nucleus by regulation of the glutathione (GSH) metabolic pathway. High enrichment of GSH in the nucleus can be accomplished by the addition of GSH with the help of the Bcl-2 protein. Then, high-valence Se is reduced to low-valence Se by glutathione-reductase-catalyzed GSH, and interacts with the Cd precursor formed through Cd and thiol-rich proteins, eventually generating QDs in the nucleus. Our work contributes to a new understanding of the syntheses of substances in the cell nucleus and will pave the way for the development of advanced 'supercells'.

2.
Angew Chem Int Ed Engl ; 63(16): e202318893, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38376389

RESUMEN

α-Ketoaldehydes play versatile roles in the ubiquitous natural processes of protein glycation. However, leveraging the reactivity of α-ketoaldehydes for biomedical applications has been challenging. Previously, the reactivity of α-ketoaldehydes with guanidine has been harnessed to design probes for labeling Arg residues on proteins in an aqueous medium. Herein, a highly effective, broadly applicable, and operationally simple protocol for stapling native peptides by crosslinking two amino groups through diverse imidazolium linkers with various α-ketoaldehyde reagents is described. The use of hexafluoroisopropanol as a solvent facilitates rapid and clean reactions under mild conditions and enables unique selectivity for Lys over Arg. The naturally occurring GOLD/MOLD linkers have been expanded to encompass a wide range of modified glyoxal-lysine dimer (OLD) linkers. In a proof-of-concept trial, these modular stapling reactions enabled a convenient two-round strategy to streamline the structure-activity relationship (SAR) study of the wasp venom peptide anoplin, leading to enhanced biological activities.


Asunto(s)
Glioxal , Lisina , Glioxal/química , Lisina/química , Aminas , Aldehídos , Péptidos , Reactivos de Enlaces Cruzados/química
3.
Chem Sci ; 14(39): 10884-10891, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37829010

RESUMEN

Covalent trapping of DNA-binding proteins via photo-crosslinking is an advantageous method for studying DNA-protein interactions. However, traditional photo-crosslinkers generate highly reactive intermediates that rapidly and non-selectively react with nearby functional groups, resulting in low target-capture yields and high non-target background capture. Herein, we report that photo-caged 2-butene-1,4-dial (PBDA) is an efficient photo-crosslinker for trapping DNA-binding proteins. Photo-irradiation (360 nm) of PBDA-modified DNA generates 2-butene-1,4-dial (BDA), a small, long-lived intermediate that reacts selectively with Lys residues of DNA-binding proteins, leading in minutes to stable DNA-protein crosslinks in up to 70% yield. In addition, BDA exhibits high specificity for target proteins, leading to low non-target background capture. The high photo-crosslinking yield and target specificity make PBDA a powerful tool for studying DNA-protein interactions.

4.
Nat Commun ; 14(1): 5324, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658053

RESUMEN

In conventional solid-phase peptide synthesis (SPPS), α-amino groups are protected with alkoxycarbonyl groups (e.g., 9-fluorenylmethoxycarbonyl [Fmoc]). However, during SPPS, inherent side reactions of the protected amino acids (e.g., α-C racemization and aspartimide formation) generate by-products that are hard to remove. Herein, we report a thiol-labile amino protecting group for SPPS, the 2,4-dinitro-6-phenyl-benzene sulfenyl (DNPBS) group, which is attached to the α-amino group via a S-N bond and can be quantitatively removed in minutes under nearly neutral conditions (1 M p-toluenethiol/pyridine). The use of DNPBS greatly suppresses the main side reactions observed during conventional SPPS. Although DNPBS SPPS is not as efficient as Fmoc SPPS, especially for synthesis of long peptides, DNPBS and Fmoc are orthogonal protecting groups; and thus DNPBS SPPS and Fmoc SPPS can be combined to synthesize peptides that are otherwise difficult to obtain.


Asunto(s)
Aminoácidos , Biosíntesis de Péptidos , Benceno , Carbono , Compuestos de Sulfhidrilo
5.
Angew Chem Int Ed Engl ; 62(2): e202212199, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36398699

RESUMEN

Amino groups are common in both natural and synthetic compounds and offer a very attractive class of endogenous handles for bioconjugation. However, the ability to differentiate two types of amino groups and join them with high hetero-selectivity and efficiency in a complex setting remains elusive. Herein, we report a new method for bioconjugation via one-pot chemoselective clamping of two different amine nucleophiles using a simple ortho-phthalaldehyde (OPA) reagent. Various α-amino acids, aryl amines, and secondary amines can be crosslinked to the ϵ-amino side chain of lysine on peptides or proteins with high efficiency and hetero-selectivity. This method offers a simple and powerful means to crosslink small molecule drugs, imaging probes, peptides, proteins, carbohydrates, and even virus particles without any pre-functionalization.


Asunto(s)
Aminas , o-Ftalaldehído , o-Ftalaldehído/química , Aminas/química , Constricción , Proteínas/química , Péptidos/química
6.
Angew Chem Int Ed Engl ; 61(47): e202201848, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36163470

RESUMEN

Fluorinated nucleotides are invaluable for 19 F NMR studies of nucleic acid structure and function. Here, we synthesized 4'-SCF3 -thymidine (T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ ) and incorporated it into DNA by means of solid-phase DNA synthesis. NMR studies showed that the 4'-SCF3 group exhibited a flexible orientation in the minor groove of DNA duplexes and was well accommodated by various higher order DNA structures. The three magnetically equivalent fluorine atoms in 4'-SCF3 -DNA constitute an isolated spin system, offering high 19 F NMR sensitivity and excellent resolution of the positioning of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ within various secondary and tertiary DNA structures. The high structural adaptability and high sensitivity of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ make it a valuable 19 F NMR probe for quantitatively distinguishing diverse DNA structures with single-nucleotide resolution and for monitoring the dynamics of interactions in the minor groove of double-stranded DNA.


Asunto(s)
ADN , Flúor , ADN/química , Espectroscopía de Resonancia Magnética , Flúor/química , Nucleótidos , Técnicas de Síntesis en Fase Sólida , Conformación de Ácido Nucleico
7.
Acc Chem Res ; 55(7): 1059-1073, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35271268

RESUMEN

DNA is damaged by various endogenous and exogenous sources, leading to a diverse group of reactive intermediates that yield a complex mixture of products. The initially formed products are often metastable and can react to yield lesions that are more biologically deleterious. Mechanistic studies are frequently carried out on free DNA as the substrate. The observations do not necessarily reflect the reaction environment inside human cells where genomic DNA is condensed as chromatin in the nucleus. Chromatin is made up of monomeric structural units called nucleosomes, which are comprised of DNA wrapped around an octameric core of histone proteins (two copies each of histones H2A, H2B, H3, and H4).This account presents a summary of our work in the past decade on the mechanistic studies of DNA damage and repair in reconstituted nucleosome core particles (NCPs). A series of metastable lesions and reactive intermediates, such as abasic sites (AP), N7-methyl-2'-deoxyguanosine (MdG), and 2'-deoxyadenosin-N6-yl radical (dA•), have been independently generated in a site-specific manner in bottom-up-synthesized NCPs. Detailed mechanistic studies on these NCPs revealed that histones actively participate in DNA damage and repair processes in diverse ways. For instance, nucleophilic residues in the flexible histone N-terminal tails, such as Lys and N-terminal α-amine, react with electrophilic DNA damage and reactive intermediates. In some cases, transient intermediates are produced, leading to the promotion or suppression of damage and repair processes. In other examples, reactions with histones yield reversible or stable DNA-protein cross-links (DPCs). Histones also utilize acidic and basic residues, such as histidine and aspartic acid, to catalyze DNA strand cleavage through general acid/base catalysis. Alternatively, a Tyr in histone plays a vital role in nucleosomal DNA damage and repair via radical transfer. Finally, the reactivity discovered during the mechanistic studies has facilitated the development of new reagents and methods with applications in biotechnology.This research has enriched our knowledge of the roles of histone proteins in DNA damage and repair and their contributions to epigenetics and may have significant biological implications. The residues in histone N-terminal tails that react with DNA lesions also play pivotal roles in regulating the structure and function of chromatin, indicating that there may be cross-talk between DNA damage and repair in eukaryotic cells and epigenetic regulation. Also, in view of the biased amino acid composition of histones, these results provide hints about how the proteins have evolved to minimize their deleterious effects but maximize beneficial ones for maintaining genome integrity. Finally, previously unreported DPCs and histone post-translational modifications have been discovered through this research. The effects of these newly identified lesions on the structure and function of chromatin and their fates inside cells remain to be elucidated.


Asunto(s)
Histonas , Nucleosomas , ADN/química , Daño del ADN , Reparación del ADN , Epigénesis Genética , Histonas/metabolismo , Humanos
8.
ChemMedChem ; 17(2): e202100671, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34807508

RESUMEN

The cGAS-STING pathway discovered ten years ago is an important component of the innate immune system. Activation of cGAS-STING triggers downstream signalling, such as TBK1-IRF3, NF-κB and autophagy, which in turn leads to antipathogen responses, durable antitumour immunity or autoimmune diseases. 2',3'-Cyclic GMP-AMP dinucleotides (2',3'-cGAMP), the key second messengers produced by cGAS, play a pivotal role in cGAS-STING signalling by binding and activating STING. Thus, 2',3'-cGAMP has immunotherapeutic potential, which in turn has stimulated research on the design and synthesis of 2',3'-cGAMP analogues for clinical applications over the past ten years. This review presents the discovery, metabolism, and function of 2',3'-cGAMP in the cGAS-STING innate immune signalling axis. The enzymatic and chemical syntheses of 2',3'-cGAMP analogues as STING-targeting therapeutics are also summarized.


Asunto(s)
Inmunoterapia , Proteínas de la Membrana/antagonistas & inhibidores , Neoplasias/terapia , Nucleótidos Cíclicos/farmacología , Nucleótidos/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Humanos , Proteínas de la Membrana/inmunología , Modelos Moleculares , Conformación Molecular , Neoplasias/inmunología , Nucleótidos/síntesis química , Nucleótidos/química , Nucleótidos Cíclicos/síntesis química , Nucleótidos Cíclicos/química , Nucleotidiltransferasas/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
9.
Nucleic Acids Res ; 49(21): 12306-12319, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34865123

RESUMEN

DNA damage and apoptosis lead to the release of free nucleosomes-the basic structural repeating units of chromatin-into the blood circulation system. We recently reported that free nucleosomes that enter the cytoplasm of mammalian cells trigger immune responses by activating cGMP-AMP synthase (cGAS). In the present study, we designed experiments to reveal the mechanism of nucleosome uptake by human cells. We showed that nucleosomes are first absorbed on the cell membrane through nonspecific electrostatic interactions between positively charged histone N-terminal tails and ligands on the cell surface, followed by internalization via clathrin- or caveolae-dependent endocytosis. After cellular internalization, endosomal escape occurs rapidly, and nucleosomes are released into the cytosol, maintaining structural integrity for an extended period. The efficient endocytosis of extracellular nucleosomes suggests that circulating nucleosomes may lead to cellular disorders as well as immunostimulation, and thus, the biological effects exerted by endocytic nucleosomes should be addressed in the future.


Asunto(s)
Caveolinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis , Nucleosomas/metabolismo , Animales , Línea Celular , Toxina del Cólera/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Células Hep G2 , Humanos , Lisosomas/metabolismo , Ratones , Microscopía Confocal , Nucleosomas/genética , Células THP-1 , Transferrina/metabolismo
10.
Chemistry ; 27(59): 14738-14746, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34432342

RESUMEN

Fluoro-substitution on the ribose moiety (e. g., 2'-F-deoxyribonucleotide) represents a popular way to modulate the ribose conformation and, hence, the structure and function of nucleic acids. In the present study, we synthesized 4'-F-deoxythymidine (4'-F T) and introduced it to oligodeoxyribonucleotides (ODNs). Though scission of the glycosylic bond of 4'-F T followed by strand cleavage occurred to some extent under alkaline conditions, the 4'-F T-modified ODNs were rather stable in neutral buffers. NMR studies showed that like 2'-F-deoxyribonucleoside, 4'-F T exists predominantly in the North conformation not only in the nucleoside form but also in the context of ODN strands. Circular dichroism spectroscopy, thermal denaturing and RNase H1 footprinting studies of 4'-F T-modified ODN/cDNA and ODN/cRNA duplexes indicated that the North conformation tendency of 4'-F T is maintained in the duplexes, leading to a local structural perturbation. Collectively, 4'-F-deoxyribonucleotide structurally resembles the 2'-F-deoxyribonucleotide but imparts less structural perturbation to the duplex than the latter.


Asunto(s)
Nucleósidos , Oligodesoxirribonucleótidos , Dicroismo Circular , Conformación Molecular , Conformación de Ácido Nucleico
12.
Nucleic Acids Res ; 49(1): 257-268, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290564

RESUMEN

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a biomarker of oxidative DNA damage and can be repaired by hOGG1 and APE1 via the base excision repair (BER) pathway. In this work, we studied coordinated BER of 8-oxodGuo by hOGG1 and APE1 in nucleosome core particles and found that histones transiently formed DNA-protein cross-links (DPCs) with active repair intermediates such as 3'-phospho-α,ß-unsaturated aldehyde (PUA) and 5'-deoxyribosephosphate (dRP). The effects of histone participation could be beneficial or deleterious to the BER process, depending on the circumstances. In the absence of APE1, histones enhanced the AP lyase activity of hOGG1 by cross-linking with 3'-PUA. However, the formed histone-PUA DPCs hampered the subsequent repair process. In the presence of APE1, both the AP lyase activity of hOGG1 and the formation of histone-PUA DPCs were suppressed. In this case, histones could catalyse removal of the 5'-dRP by transiently cross-linking with the active intermediate. That is, histones promoted the repair by acting as 5'-dRP lyases. Our findings demonstrate that histones participate in multiple steps of 8-oxodGuo repair in nucleosome core particles, highlighting the diverse roles that histones may play during DNA repair in eukaryotic cells.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Reparación del ADN/fisiología , Histonas/fisiología , Nucleosomas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleosomas/ultraestructura , Conformación Proteica , Ribosamonofosfatos/metabolismo
13.
Sci Rep ; 10(1): 15385, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958884

RESUMEN

The nucleosome is the basic structural repeating unit of chromatin. DNA damage and cell apoptosis release nucleosomes into the blood circulatory system, and increased levels of circulating nucleosomes have been observed to be related to inflammation and autoimmune diseases. However, how circulating nucleosomes trigger immune responses has not been fully elucidated. cGAS (cGMP-AMP synthase) is a recently discovered pattern recognition receptor that senses cytoplasmic double-stranded DNA (dsDNA). In this study, we employed in vitro reconstituted nucleosomes to examine whether extracellular nucleosomes can gain access to the cytoplasm of mammalian cells to induce immune responses by activating cGAS. We showed that nucleosomes can be taken up by various mammalian cells. Additionally, we found that in vitro reconstituted mononucleosomes and oligonucleosomes can be recognized by cGAS. Compared to dsDNA, nucleosomes exhibit higher binding affinities to cGAS but considerably lower potency in cGAS activation. Incubation of monocytic cells with reconstituted nucleosomes leads to limited production of type I interferons and proinflammatory cytokines via a cGAS-dependent mechanism. This proof-of-concept study reveals the cGAS-dependent immunogenicity of nucleosomes and highlights the potential roles of circulating nucleosomes in autoimmune diseases, inflammation, and antitumour immunity.


Asunto(s)
Inmunidad Innata/inmunología , Nucleosomas/inmunología , Nucleotidiltransferasas/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Apoptosis , Línea Celular , Cromatina/metabolismo , GMP Cíclico/metabolismo , Citocinas/metabolismo , Citosol/metabolismo , ADN/metabolismo , Daño del ADN , Vesículas Extracelulares/inmunología , Células HeLa , Células Hep G2 , Humanos , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Nucleosomas/metabolismo , Nucleotidiltransferasas/inmunología , Transducción de Señal/genética , Células THP-1
14.
Nat Commun ; 11(1): 1015, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081914

RESUMEN

Many reagents have been developed for cysteine-specific protein modification. However, few of them allow for multi-functionalization of a single Cys residue and disulfide bridging bioconjugation. Herein, we report 3-bromo-5-methylene pyrrolones (3Br-5MPs) as a simple, robust, and versatile class of reagents for cysteine-specific protein modification. These compounds can be facilely synthesized via a one-pot mild reaction and they show comparable tagging efficiency but higher cysteine specificity than the maleimide counterparts. The addition of cysteine to 3Br-5MPs generates conjugates that are amenable to secondary addition by another thiol or cysteine, making 3Br-5MPs valuable for multi-functionalization of a single cysteine and disulfide bridging bioconjugation. The labeling reaction and subsequent treatments are mild enough to produce stable and active protein conjugates for biological applications.


Asunto(s)
Cisteína/química , Proteínas/química , Técnicas de Química Sintética/métodos , Disulfuros/química , Indicadores y Reactivos/química , Fenómenos Químicos Orgánicos , Pirroles/química , Somatostatina/química
15.
J Am Chem Soc ; 142(10): 4739-4748, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32067454

RESUMEN

Fluorinated RNA molecules, particularly 2'-F RNA, have found a wide range of applications in RNA therapeutics, RNA aptamers, and ribozymes and as 19F NMR probes for elucidating RNA structure. Owing to the instability of 4'-F ribonucleosides, synthesis of 4'-F-modified RNA has long been a challenge. In this study, we developed a strategy for synthesizing a 4'-F-uridine (4'FU) phosphoramidite, and we used it to prepare 4'-F RNA successfully. In the context of an RNA strand, 4'FU, which existed in a North conformation, was reasonably stable and resembled unmodified uridine well. The 19F NMR signal of 4'FU was sensitive to RNA secondary structure, with a chemical shift dispersion as large as 4 ppm (compared with <1 ppm for 2'FU), which makes it a valuable probe for discriminating single-stranded RNA and A-type, B-type, and mismatched duplexes. In addition, we demonstrated that because RNA-processing enzymes treated 4'FU the same as unmodified uridine, 4'FU could be used to monitor RNA structural dynamics and enzyme-mediated RNA processing. Taken together, our results indicate that 4'-F RNA represents a probe with wide utility for elucidation of RNA structure and function by means of 19F NMR spectroscopy.


Asunto(s)
Sondas Moleculares/química , ARN/química , Uridina/análogos & derivados , Flúor/química , Halogenación , Sondas Moleculares/síntesis química , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Ribonucleasas/química
16.
Proc Natl Acad Sci U S A ; 117(8): 4117-4124, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32047038

RESUMEN

The Cullin-RING ligases (CRLs) are the largest family of ubiquitin E3s activated by neddylation and regulated by the deneddylase COP9 signalosome (CSN). The inositol polyphosphate metabolites promote the formation of CRL-CSN complexes, but with unclear mechanism of action. Here, we provide structural and genetic evidence supporting inositol hexakisphosphate (IP6) as a general CSN cofactor recruiting CRLs. We determined the crystal structure of IP6 in complex with CSN subunit 2 (CSN2), based on which we identified the IP6-corresponding electron density in the cryoelectron microscopy map of a CRL4A-CSN complex. IP6 binds to a cognate pocket formed by conserved lysine residues from CSN2 and Rbx1/Roc1, thereby strengthening CRL-CSN interactions to dislodge the E2 CDC34/UBE2R from CRL and to promote CRL deneddylation. IP6 binding-deficient Csn2K70E/K70E knockin mice are embryonic lethal. The same mutation disabled Schizosaccharomyces pombe Csn2 from rescuing UV-hypersensitivity of csn2-null yeast. These data suggest that CRL transition from the E2-bound active state to the CSN-bound sequestered state is critically assisted by an interfacial IP6 small molecule, whose metabolism may be coupled to CRL-CSN complex dynamics.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Calorimetría/métodos , Eliminación de Gen , Técnicas de Sustitución del Gen , Genes Transgénicos Suicidas , Genotipo , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae , Organismos Libres de Patógenos Específicos , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
17.
Chem Res Toxicol ; 32(12): 2517-2525, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31726825

RESUMEN

Nitrogen mustards have long been used in cancer chemotherapy, and their cytotoxicity has traditionally been attributed to the formation of DNA interstrand cross-links and DNA monoalkylation. Recent studies have shown that exposure to nitrogen mustards also induces the formation of DNA-protein cross-links (DPCs) via bridging between N7 of a deoxyguanosine residue in the DNA and the side chain of a Cys residue in the protein. However, the formation of nitrogen mustard-induced DNA-histone cross-links has never been observed. Herein, we demonstrate that treating reconstituted nucleosome core particles (NCPs) with the nitrogen mustard mechlorethamine results in the formation of DNA-histone cross-links in addition to DNA monoalkylation and interstrand cross-link formation. The yields of these three types of DNA lesions in the NCPs decreased in the following order: DNA monoalkylation ≫ DNA interstrand cross-links > DNA-histone cross-links. Mechanistic studies involving tailless histones and competitive inhibition by a polyamine demonstrated that Lys residues in the N- and C-terminal tails of the histones were the predominant sites involved in DNA-histone cross-link formation. Given that NCPs are the fundamental repeating units of chromatin in eukaryotes, our findings suggest that nitrogen mustard-induced formation of DNA-histone cross-links may occur in living cells and that DPC formation may contribute to the cytotoxicity of nitrogen mustards.


Asunto(s)
Alquilantes/química , Reactivos de Enlaces Cruzados/química , ADN/efectos de los fármacos , Histonas/efectos de los fármacos , Mecloretamina/química , Nucleosomas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , ADN/química , Histonas/química , Masculino , Modelos Químicos , Nucleosomas/química , Salmón , Espermatozoides/química
18.
Chem Sci ; 10(39): 8973-8980, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31762977

RESUMEN

When designing prodrugs, choosing an appropriate linker is the key to achieving efficient, controlled drug delivery. Herein, we report the use of a photocaged C4'-oxidized abasic site (PC4AP) as a light-responsive, self-immolative linker. Any amine- or hydroxyl-bearing drug can be loaded onto the linker via a carbamate or carbonate bond, and the linker is then conjugated to a carrier peptide or protein via an alkyl chain. The PC4AP linker is stable under physiologically relevant conditions. However, photodecaging of the linker generates an active intermediate that reacts intramolecularly with a primary amine (the ε-amine of a lysine residue and the N-terminal amine) on the carrier, leading to rapid and efficient release of the drug via an addition-elimination cascade, without generating any toxic side products. We demonstrated that the use of this self-immolative linker to conjugate the anticancer drug doxorubicin to a cell-penetrating peptide or an antibody enabled targeted, controlled delivery of the drug to cells. Our results suggest that the linker can be used with a broad range of carriers, such as cell-penetrating peptides, proteins, antibodies, and amine-functionalized polymers, and thus will find a wide range of practical applications.

19.
DNA Repair (Amst) ; 81: 102649, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31303545

RESUMEN

5-Formyl-2'-deoxycytidine (5fdC) is a naturally occurring nucleobase that is broadly distributed in genomic DNA. 5fdC is produced via the oxidation of 5-methylcytosine (5mdC) by ten-eleven translocation enzyme (TET) and can be further converted to 5-carboxylcytosine (5cadC) by TET. Both 5fdC and 5cadC can be restored to dC by TDG-mediated base excision repair and direct deformylation/decarboxylation. Thus, 5fdC is considered an intermediate in the TET-mediated DNA demethylation pathway. 5fdC also alters the structure and stability of genomic DNA and affects genetic expression. This review summarizes the recent research on 5fdC, detailing its formation, detection and distribution, biological functions and transformation in cells. The challenges and future prospects to further explore the function and metabolism of 5fdC are briefly discussed at the end.


Asunto(s)
5-Metilcitosina/metabolismo , Genoma , Animales , ADN/metabolismo , Metilación de ADN , Reparación del ADN , Epigénesis Genética , Humanos
20.
Org Biomol Chem ; 17(22): 5550-5560, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112186

RESUMEN

Herein, we report the synthesis of 4'-C-trifluoromethyl (4'-CF3) thymidine (T4'-CF3) and its incorporation into oligodeoxynucleotides (ODNs) through solid-supported DNA synthesis. The 4'-CF3 modification leads to a marginal effect on the deoxyribose conformation and a local helical structure perturbation for ODN/RNA duplexes. This type of modification slightly decreases the thermal stability of ODN/RNA duplexes (-1 °C/modification) and leads to improved nuclease resistance. Like the well-known phosphorothioate (PS) modification, heavy 4'-CF3 modifications enable direct cellular uptake of the modified ODNs without any delivery reagents. This work highlights that 4'-CF3 modified ODNs are promising candidates for antisense-based therapeutics, which will, in turn, inspire us to develop more potent modifications for antisense ODNs and siRNAs.


Asunto(s)
Hidrocarburos Fluorados/química , Oligodesoxirribonucleótidos/farmacocinética , Células HeLa , Humanos , Hidrocarburos Fluorados/sangre , Microscopía Confocal , Conformación Molecular , Oligodesoxirribonucleótidos/sangre , Oligodesoxirribonucleótidos/química , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...