Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(14): eadn6519, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569036

RESUMEN

Synthesizing single-walled carbon nanotubes (SWCNTs) with a narrow chirality distribution is essential for obtaining pure chirality materials through postgrowth sorting techniques. Using carbon monoxide chemical vapor deposition, we devise a ruthenium (Ru) catalyst supported by silica for the bulk production of SWCNTs containing only a few (n, m) species. The result is attributed to the limited carbon dissociation on the supported Ru clusters, favoring the growth of only small-diameter SWCNTs at comparable growth rates. The resulting materials expedite high-purity single chirality separation using gel chromatography, leading to unprecedented yields of 3.5% for (9, 1) and 5.2% for (9, 2) nanotubes, which surpass those separated from HiPco SWCNTs by two orders of magnitude. This work sheds light on the large-quantity synthesis of SWCNTs with enriched species beyond near-armchair ones for their high-yield separation.

2.
Proc Natl Acad Sci U S A ; 120(6): e2209670120, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719922

RESUMEN

An optical blackbody is an ideal absorber for all incident optical radiation, and the theoretical study of its radiation spectra paved the way for quantum mechanics (Planck's law). Herein, we propose the concept of an electron blackbody, which is a perfect electron absorber as well as an electron emitter with standard energy spectra at different temperatures. Vertically aligned carbon nanotube arrays are electron blackbodies with an electron absorption coefficient of 0.95 for incident energy ranging from 1 keV to 20 keV and standard electron emission spectra that fit well with the free electron gas model. Such a concept might also be generalized to blackbodies for extreme ultraviolet, X-ray, and γ-ray photons as well as neutrons, protons, and other elementary particles.

3.
ACS Appl Mater Interfaces ; 10(37): 31384-31393, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30125080

RESUMEN

Inverted perovskite solar cells (PSCs) have been becoming more and more attractive, owing to their easy-fabrication and suppressed hysteresis, while the ion diffusion between metallic electrode and perovskite layer limit the long-term stability of devices. In this work, we employed a novel polyethylenimine (PEI) modified cross-stacked superaligned carbon nanotube (CSCNT) film in the inverted planar PSCs configurated FTO/NiO x/methylammonium lead tri-iodide (MAPbI3)/6, 6-phenyl C61-butyric acid methyl ester (PCBM)/CSCNT:PEI. By modifying CSCNT with a certain concentration of PEI (0.5 wt %), suitable energy level alignment and promoted interfacial charge transfer have been achieved, leading to a significant enhancement in the photovoltaic performance. As a result, a champion power conversion efficiency (PCE) of ∼11% was obtained with a Voc of 0.95 V, a Jsc of 18.7 mA cm-2, a FF of 0.61 as well as negligible hysteresis. Moreover, CSCNT:PEI based inverted PSCs show superior durability in comparison to the standard silver based devices, remaining over 85% of the initial PCE after 500 h aging under various conditions, including long-term air exposure, thermal, and humid treatment. This work opens up a new avenue of facile modified carbon electrodes for highly stable and hysteresis suppressed PSCs.

4.
Nano Lett ; 18(8): 4691-4696, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29975842

RESUMEN

A superaligned carbon nanotube (SACNT) film can act as an ideal gate electrode in vacuum electronics due to its low secondary electron emission, high electron transparency, ultrasmall thickness, highly uniform electric field, high melting point, and high mechanical strength. We used a SACNT film as the gate electrode in a thermionic emission electron tube and field emission display prototype. The SACNT film gate in a thermionic emission electron tube shows a larger amplification factor. A triode tube with the SACNT film gate is used in an audio amplification circuit. The SACNT film gate electrode in field emission devices shows better field uniformity. The field emission display prototype is demonstrated to dynamically display Chinese characters.

5.
Nanotechnology ; 29(34): 345601, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-29775440

RESUMEN

Using super-aligned carbon nanotube (CNT) film, we have fabricated van der Waals crystalline multiwall CNTs (MWCNT) by adopting high pressure and high temperature processing. The CNTs keep parallel to each other and are distributed uniformly. X-ray diffraction characterization shows peaks at the small angle range, which can be assigned to the spacing of the MWCNT crystals. The mechanical, electrical and thermal properties are all greatly improved compared with the original CNT film. The field emission properties of van der Waals crystalline MWCNTs are tested and they show a better surface morphology stability for the large emission current. We have further fabricated a field emission x-ray tube and demonstrated a precise resolution imaging ability.

6.
ACS Nano ; 9(4): 3753-9, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25768793

RESUMEN

The influence of heating load on the thermal response of a CNT film heater has been studied. Two kinds of heat dissipation modes, thermal radiation in a vacuum and convection in the atmosphere, are investigated, respectively. It is found that the thermal response slows down with the load quantities in the both cases. We have further studied the thermal response of a CNT film loaded with thermochromic pigment, which is a kind of phase change material. In addition to the thermal response slowing down with the load quantity, it is also found that the phase change of the thermochromic pigments can also slow down the thermal response. With a suspended CNT film heater structure, we have fabricated a thermochromic display prototype, which can switch from room temperature to 50 °C in about 1 s with a brightness contrast of 4.8 under normal indoor illumination. A 16 × 16 pixel thermochromic display prototype can dynamically display Chinese characters driven by a homemade circuit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...