Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273180

RESUMEN

Rubisco small subunit (RbcS), a core component with crucial effects on the structure and kinetic properties of the Rubisco enzyme, plays an important role in response to plant growth, development, and various stresses. Although Rbcs genes have been characterized in many plants, their muti-functions in soybeans remain elusive. In this study, a total of 11 GmRbcS genes were identified and subsequently divided into three subgroups based on a phylogenetic relationship. The evolutionary analysis revealed that whole-genome duplication has a profound effect on GmRbcSs. The cis-acting elements responsive to plant hormones, development, and stress-related were widely found in the promoter region. Expression patterns based on the RT-qPCR assay exhibited that GmRbcS genes are expressed in multiple tissues, and notably Glyma.19G046600 (GmRbcS8) exhibited the highest expression level compared to other members, especially in leaves. Moreover, differential expressions of GmRbcS genes were found to be significantly regulated by exogenous plant hormones, demonstrating their potential functions in diverse biology processes. Finally, the function of GmRbcS8 in enhancing soybean resistance to soybean mosaic virus (SMV) was further determined through the virus-induced gene silencing (VIGS) assay. All these findings establish a strong basis for further elucidating the biological functions of RbcS genes in soybeans.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Filogenia , Reguladores del Crecimiento de las Plantas , Potyvirus , Glycine max/genética , Glycine max/virología , Glycine max/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Potyvirus/patogenicidad , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Resistencia a la Enfermedad/genética , Familia de Multigenes
2.
Front Plant Sci ; 14: 1162014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152141

RESUMEN

The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA