Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 964
Filtrar
1.
Chin J Integr Med ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733455

RESUMEN

OBJECTIVE: To explore the rapid antidepressant potential and the underlying mechanism of Chaihu Shugan San (CSS) in female mice. METHODS: Liquid chromatography mass spectrometry (LC-MS)/MS was used to determine the content of main components in CSS to determine its stability. Female C57BL/6J mice were randomly divided into 4 groups, including control (saline), vehicle (saline), CSS (4 g/kg) and ketamine (30 mg/kg) groups. Mice were subjected to irregular stress stimulation for 4 weeks to establish the chronic mild stress (CMS) model, then received a single administration of drugs. Two hours later, the behavioral tests were performed, including open field test, tail suspension test (TST), forced swimming test (FST), novelty suppression feeding test (NSF), and sucrose preference test (SPT). Western blot analysis was used to detect the expression levels of N-methyl-D-aspartate receptor (NMDA) subtypes [N-methyl-D-aspartate receptor 1 (NR1), NR2A, NR2B], synaptic proteins [synapsin1 and post synaptic density protein 95 (PSD95)], and brain-derived neurotrophic factor (BDNF). Moreover, the rapid antidepressant effect of CSS was tested by pharmacological technologies and optogenetic interventions that activated glutamate receptors, NMDA. RESULTS: Compared with the vehicle group, a single administration of CSS (4 g/kg) reversed all behavioral defects in TST, FST, SPT and NSF caused by CMS (P<0.05 or P<0.01). CSS also significantly decreased the expressions of NMDA subtypes (NR1, NR2A, NR2B) at 2 h in hippocampus of mice (all P<0.01). In addition, similar to ketamine, CSS increased levels of synaptic proteins and BDNF (P<0.05 or P<0.01). Furthermore, the rapid antidepressant effects of CSS were blocked by transient activation of NMDA receptors in the hippocampus (all P<0.01). CONCLUSION: Rapid antidepressant effects of CSS by improving behavioral deficits in female CMS mice depended on rapid suppression of NMDA receptors and activation of synaptic proteins.

2.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38729344

RESUMEN

INTRODUCTION: The CHA2DS2-VASc score, used to assess the risk of left atrial appendage thrombus (LAAT) formation in patients with atrial fibrillation (AF), has limited predictive value. Moreover, transesophageal echocardiography imaging, the gold standard diagnostic method to identify thrombi, is semi-invasive. Consequently, there is a need for alternative and noninvasive diagnostic methods for LAAT risk assessment. METHODS: Deep proteomic analysis was conducted in plasma samples from 8 patients with nonvalvular AF, divided into thrombus and control groups (4 patients in each group) based on the presence or absence of LAAT. Biomarkers associated with LAAT were validated using an enzyme-linked immunosorbent assay in a cohort of 179 patients with available clinical, transthoracic, and transesophageal echocardiography data. Predictive models were developed to assess the improvement in LAAT identification. RESULTS: The LAAT group had higher CHA2DS2-VASc scores, larger LA diameter, and lower LAA flow velocities. Deep proteomic analysis identified 30 differentially expressed proteins, including myosin light chain 4, prenylcysteine oxidase 1 (PCYOX1), and decorin as potential diagnostic biomarkers of LAAT. The model showed that PCYOX1 and decorin provided an area under the curve (AUC) of 0.970 for LAAT prediction compared with 0.672 in a model including the CHA2DS2-VASc score and LAA cauliflower morphology. The incremental value of proteomic biomarkers for LAAT in patients with nonvalvular AF was further confirmed with the net reclassification improvement and integrated discrimination improvement indices. CONCLUSIONS: Protein levels of PCYOX1 and decorin improve the predictive performance for LAAT in patients with nonvalvular AF.

3.
Plants (Basel) ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732430

RESUMEN

Salt stress is one of the major abiotic stresses that damage the structure and composition of cell walls. Alginate oligosaccharides (AOS) have been advocated to significantly improve plant stress tolerance. The metabolic mechanism by which AOS induces salt tolerance in rice cell walls remains unclear. Here, we report the impact of AOS foliar application on the cell wall composition of rice seedlings using the salt-tolerant rice variety FL478 and the salt-sensitive variety IR29. Data revealed that salt stress decreased biomass, stem basal width, stem breaking strength, and lodging resistance; however, it increased cell wall thickness. In leaves, exogenous AOS up-regulated the expression level of OSCESA8, increased abscisic acid (ABA) and brassinosteroids (BR) content, and increased ß-galacturonic activity, polygalacturonase activity, xylanase activity, laccase activity, biomass, and cellulose content. Moreover, AOS down-regulated the expression levels of OSMYB46 and OSIRX10 and decreased cell wall hemicellulose, pectin, and lignin content to maintain cell wall stability under salt stress. In stems, AOS increased phenylalamine ammonia-lyase and tyrosine ammonia-lyase activities, while decreasing cellulase, laccase, and ß-glucanase activities. Furthermore, AOS improved the biomass and stem basal width and also enhanced the cellulose, pectin, and lignin content of the stem, As a result, increased resistance to stem breakage strength and alleviated salt stress-induced damage, thus enhancing the lodging resistance. Under salt stress, AOS regulates phytohormones and modifies cellulose, hemicellulose, lignin, and pectin metabolism to maintain cell wall structure and improve stem resistance to lodging. This study aims to alleviate salt stress damage to rice cell walls, enhance resistance to lodging, and improve salt tolerance in rice by exogenous application of AOS.

4.
medRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746260

RESUMEN

Background: The prevalence of co-occurring heavy alcohol consumption and obesity is increasing in the United States. Despite neurobiological overlap in the regulation of alcohol consumption and eating behavior, alcohol- and body mass index (BMI)-related phenotypes show no or minimal genetic correlation. We hypothesized that the lack of genetic correlation is due to mixed effect directions of variants shared by AUD and BMI. Methods: We applied MiXeR, to investigate shared genetic architecture between AUD and BMI in individuals of European ancestry. We used conjunctional false discovery rate (conjFDR) analysis to detect loci associated with both phenotypes and their directional effect, Functional Mapping and Annotation (FUMA) to identify lead single nucleotide polymorphisms (SNPs), Genotype-Tissue Expression (GTEx) samples to examine gene expression enrichment across tissue types, and BrainXcan to evaluate the shared associations of AUD and BMI with brain image-derived phenotypes. Results: MiXeR analysis indicated polygenic overlap of 80.9% between AUD and BMI, despite a genetic correlation (r g ) of -.03. ConjFDR analysis yielded 56 lead SNPs with the same effect direction and 76 with the opposite direction. Of the 132 shared lead SNPs, 53 were novel for both AUD and BMI. GTEx analyses identified significant overexpression in the frontal cortex (BA9), hypothalamus, cortex, anterior cingulate cortex (BA24), hippocampus, and amygdala. Amygdala and caudate nucleus gray matter volumes were significantly associated with both AUD and BMI in BrainXcan analyses. Conclusions: More than half of variants significantly associated with AUD and BMI had opposite directions of effect for the traits, supporting our hypothesis that this is the basis for their lack of genetic correlation. Follow-up analyses identified brain regions implicated in executive functioning, reward, homeostasis, and food intake regulation. Together, these findings clarify the extensive polygenic overlap between AUD and BMI and elucidate several overlapping neurobiological mechanisms.

5.
Sci Rep ; 14(1): 11083, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745087

RESUMEN

The diagnostic accuracy of clinically significant prostate cancer (csPCa) of Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) is limited by subjectivity in result interpretation and the false positive results from certain similar anatomic structures. We aimed to establish a new model combining quantitative contrast-enhanced ultrasound, PI-RADSv2, clinical parameters to optimize the PI-RADSv2-based model. The analysis was conducted based on a data set of 151 patients from 2019 to 2022, multiple regression analysis showed that prostate specific antigen density, age, PI-RADSv2, quantitative parameters (rush time, wash-out area under the curve) were independent predictors. Based on these predictors, we established a new predictive model, the AUCs of the model were 0.910 and 0.879 in training and validation cohort, which were higher than those of PI-RADSv2-based model (0.865 and 0.821 in training and validation cohort). Net Reclassification Index analysis indicated that the new predictive model improved the classification of patients. Decision curve analysis showed that in most risk probabilities, the new predictive model improved the clinical utility of PI-RADSv2-based model. Generally, this new predictive model showed that quantitative parameters from contrast enhanced ultrasound could help to improve the diagnostic performance of PI-RADSv2 based model in detecting csPCa.


Asunto(s)
Medios de Contraste , Nomogramas , Neoplasias de la Próstata , Ultrasonografía , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Ultrasonografía/métodos , Anciano , Persona de Mediana Edad , Antígeno Prostático Específico/sangre , Próstata/diagnóstico por imagen , Próstata/patología , Anciano de 80 o más Años
6.
Phys Chem Chem Phys ; 26(19): 14186-14193, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713092

RESUMEN

Cost-effective and readily accessible 3d transition metals (TMs) have been considered as promising candidates for alkane activation while 3d TMs especially the early TMs are usually not very reactive with light alkanes. In this study, the reactivity of Vn+ and VnO+ (n = 1-9) cluster cations towards ethane under thermal collision conditions has been investigated using mass spectrometry and density functional theory calculations. Among Vn+ (n = 1-9) clusters, only V3-5+ can react with C2H6 to generate dehydrogenation products and the reaction rate constants are below 10-13 cm3 molecule-1 s-1. In contrast, the reaction rate constants for all VnO+ (n = 1-9) with C2H6 significantly increase by about 2-4 orders of magnitude. Theoretical analysis evidences that the addition of ligand O affects the charge distribution of the metal centers, resulting in a significant increase in the cluster reactivity. The analysis of frontier orbitals indicates that the agostic interaction determines the size-dependent reactivity of VnO+ cluster cations. This study provides a novel approach for improving the reactivity of early 3d TMs.

8.
Dalton Trans ; 53(18): 7669-7676, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38646797

RESUMEN

A dinuclear Fe(II) spin crossover (SCO) complex with the formula [Fe2L5(NCS)4]·2DMF·2H2O (1) was synthesised from 1-naphthylimino-1,2,4-triazole (L). Complex 1 exhibits an incomplete thermally induced spin transition with a transition temperature T1/2 of 95 K and a thermally trapped metastable high-spin state at low temperatures. Furthermore, it undergoes a reversible light-induced spin crossover by alternate irradiation with 532 and 808 nm lasers.

9.
Nat Hum Behav ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632388

RESUMEN

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.

10.
Bioconjug Chem ; 35(5): 604-615, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38661725

RESUMEN

Chimeric antigen receptor T-cell (CAR-T cell) therapy has become a promising treatment option for B-cell hematological tumors. However, few optional target antigens and disease relapse due to loss of target antigens limit the broad clinical applicability of CAR-T cells. Here, we conjugated an antibody (Ab) fusion protein, consisting of an Ab domain and a SpyCatcher domain, with the FITC-SpyTag (FITC-ST) peptide to form a bispecific safety switch module using a site-specific conjugation system. We applied the safety switch module to target CD19, PDL1, or Her2-expressing tumor cells by constructing FMC63 (anti-CD19), antiPDL1, or ZHER (anti-Her2)-FITC-ST, respectively. Those switch modules significantly improved the cytotoxic effects of anti-FITC CAR-T cells on tumor cells. Additionally, we obtained the purified CD8+ T cells by optimizing a shorter version of the CD8-binding aptamer to generate anti-FITC CD8-CAR-T cells, which combined with the CD4-FITC-ST switch module (anti-CD4) to eliminate the CD4-positive tumor cells in vitro and in vivo. Overall, we established a novel safety switch module by site-specific conjugation to enhance the antitumor function of universal CAR-T cells, thereby expanding the application scope of CAR-T therapy and improving its safety and efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Animales , Inmunoterapia Adoptiva/métodos , Ratones , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD19/inmunología , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Receptor ErbB-2/inmunología
11.
Sci Rep ; 14(1): 9182, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649422

RESUMEN

In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.


Asunto(s)
Citrus , Ácidos Hexurónicos , Pectinas , Pectinas/química , Pectinas/aislamiento & purificación , Citrus/química , Viscosidad , Tamaño de la Partícula , Microondas , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Fraccionamiento Químico/métodos , Fenómenos Químicos , Frutas/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Fenoles/análisis , Fenoles/química , Fenoles/aislamiento & purificación , Esterificación
12.
BMC Med Genomics ; 17(1): 96, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650036

RESUMEN

BACKGROUND: The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS: Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS: The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION: Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.


Asunto(s)
Linfangioma Quístico , Análisis de la Célula Individual , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Linfangioma Quístico/genética , Linfangioma Quístico/metabolismo , Linfangioma Quístico/patología , Femenino , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Análisis de Secuencia de ARN , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Transcriptoma
13.
Metabolites ; 14(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38668309

RESUMEN

In order to explore the regulating role and the physiological and biochemical mechanisms of trans-abscisic acid (hereinafter referred as S-ABA) in the process of rice growth and development under salt stress, we took Chaoyou 1000 and Yuxiangyouzhan as materials and set up three salt concentration treatments, CK0 (Control treatment), N1 (50 mmol L-1 NaCl), and N2 (100 mmol L-1 NaCl), in potted trials; we aimed to study the mechanism of rice's response to salt stress from the perspective of agricultural traits and physiological biochemicals and to improve rice's resistance to salt stress through exogenously applying the regulating technology of S-ABA. The following results were obtained: Under salt stress, the growth of rice was significantly suppressed compared to CK0, exhibiting notable increases in agricultural indicators, photosynthesis efficiency, and the NA+ content of leaves. However, we noted a significant decrease in the K+ content in the leaves, alongside a prominent increase in NA+/K+ and a big increase in MDA (malondialdehyde), H2O2 (hydrogen peroxide), and O2- (superoxide anion). This caused the cytomembrane permeability to deteriorate. By applying S-ABA under salt stress (in comparison with salt treatment), we promoted improvements in agronomic traits, enhanced photosynthesis, reduced the accumulation of NA+ in leaves, increased the K+ content and the activity of antioxidant enzymes, and reduced the active oxygen content, resulting in a sharp decrease in the impact of salt stress on rice's development. The application of S-ABA decreased the endogenous ABA (abscisic acid) content under salt stress treatment but increased the endogenous GA (gibberellin) and IAA (indole acetic acid) contents and maintained the hormonal homeostasis in rice plants. To summarize, salt stress causes damage to rice growth, and the exogenous application of S-ABA can activate the pouring system mechanism of rice, suppress the outbreak of active oxygen, and regulate NA+/K+ balance and hormone homeostasis in the blades, thus relieving the salt stress.

14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 483-492, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660856

RESUMEN

OBJECTIVE: To investigate the clinical efficacy and safety of ixazomib-containing regimens in the treatment of patients with multiple myeloma (MM). METHODS: A retrospective analysis was performed on the clinical efficacy and adverse reactions of 32 MM patients treated with a combined regimen containing ixazomib in the Hematology Department of the First People's Hospital of Lianyungang from January 2020 to February 2022. Among the 32 patients, 15 patients were relapsed and refractory multiple myeloma (R/RMM) (R/RMM group), 17 patients who responded to bortezomib induction therapy but converted to ixazomib-containing regimen due to adverse events (AE) or other reasons (conversion treatment group). The treatment included IPD regimen (ixazomib+pomalidomide+dexamethasone), IRD regimen (ixazomib+lenalidomide+dexamethasone), ICD regimen (ixazomib+cyclophosphamide+dexamethasone), ID regimen (ixazomib+dexamethasone). RESULTS: Of 15 R/RMM patients, overall response rate (ORR) was 53.3%(8/15), among them, 1 achieved complete response (CR), 2 achieved very good partial response (VGPR) and 5 achieved partial response (PR). The ORR of the IPD, IRD, ICD and ID regimen group were 100%(3/3), 42.9%(3/7), 33.3%(1/3), 50%(1/2), respectively, there was no statistically significant difference in ORR between four groups (χ 2=3.375, P =0.452). The ORR of patients was 50% after first-line therapy, 42.9% after second line therapy, 60% after third line therapy or more, with no statistically significant difference among them (χ2=2.164, P =0.730). In conversion treatment group, ORR was 88.2%(15/17), among them, 6 patients achieved CR, 5 patients achieved VGPR and 4 patients achieved PR. There was no statistically significant difference in ORR between the IPD(100%, 3/3), IRD(100%, 6/6), ICD(100%, 3/3) and ID(60%, 3/5) regimen groups (χ2=3.737,P =0.184). The median progression-free survival (PFS) time of R/RMM patients was 9 months (95% CI : 6.6-11.4 months), the median overall survival (OS) time was 18 months (95% CI : 11.8-24.4 months). The median PFS time of conversion treatment group was 15 months (95% CI : 7.3-22.7 months), the median OS time not reached. A total of 10 patients suffered grade 3- 4 adverse event (AE). The common hematological toxicities were leukocytopenia, anemia, thrombocytopenia. The common non-hematological toxicities were gastrointestinal symptoms (diarrhea, nausea and vomit), peripheral neuropathy, fatigue and infections. Grade 1-2 peripheral neurotoxicity occurred in 7 patients. CONCLUSION: The ixazomib-based chemotherapy regimens are safe and effective in R/RMM therapy, particularly for conversion patients who are effective for bortezomib therapy. The AE was manageable and safe.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos de Boro , Dexametasona , Glicina , Glicina/análogos & derivados , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Compuestos de Boro/uso terapéutico , Glicina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Estudios Retrospectivos , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Masculino , Femenino , Resultado del Tratamiento , Persona de Mediana Edad , Bortezomib/efectos adversos , Anciano
15.
Clin Exp Immunol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661482

RESUMEN

Cerebral aneurysm (CA) represent a significant clinical challenge, characterized by pathological dilation of cerebral arteries. Recent evidence underscores the crucial involvement of immune cells in CA pathogenesis. This study aims to explore the complex interplay between immune cells and CA formation. We analyzed single-cell RNA sequencing data from the GSE193533 dataset, focusing on unruptured CA and their controls. Comprehensive cell-type identification and pseudotime trajectory analyses were conducted to delineate the dynamic shifts in immune cell populations. Additionally, a two-sample Mendelian Randomization (MR) approach was employed to investigate the causal influence of various immunophenotypes on CA susceptibility and the reciprocal effect of CA formation on immune phenotypes. Single-cell transcriptomic analysis revealed a progressive loss of vascular smooth muscle cells (VSMCs) and an increase in monocytes/macrophages (Mo/MΦ) and other immune cells, signifying a shift from a structural to an inflammatory milieu in CA evolution. MR analysis identified some vital immunophenotypes, such as CD64 on CD14+ CD16+ monocytes (OR: 1.236, 95% CI: 1.064 to 1.435, p=0.006), as potential risk factors for CA development, while others, like CD28- CD8br %CD8br (OR: 0.883, 95% CI: 0.789 to 0.988, p=0.030), appeared protective. Reverse MR analysis demonstrated that CA formation could modulate specific immunophenotypic expressions, highlighting a complex bidirectional interaction between CA pathology and immune response. This study underscores the pivotal role of immune cells in this process through the integration of single-cell transcriptomics with MR analysis, offering a comprehensive perspective on CA pathogenesis, potentially guiding future therapeutic strategies targeting specific immune pathways.

16.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629562

RESUMEN

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Asunto(s)
Contaminantes del Suelo , Sorghum , Cadmio/análisis , Biodegradación Ambiental , Suelo , Arena , Ácido Cítrico , Contaminantes del Suelo/análisis , China , Grano Comestible/química
17.
Biotechnol Bioeng ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639160

RESUMEN

This study presents a novel approach for developing generic metabolic Raman calibration models for in-line cell culture analysis using glucose and lactate stock solution titration in an aqueous phase and data augmentation techniques. First, a successful set-up of the titration method was achieved by adding glucose or lactate solution at several different constant rates into the aqueous phase of a bench-top bioreactor. Subsequently, the in-line glucose and lactate concentration were calculated and interpolated based on the rate of glucose and lactate addition, enabling data augmentation and enhancing the robustness of the metabolic calibration model. Nine different combinations of spectra pretreatment, wavenumber range selection, and number of latent variables were evaluated and optimized using aqueous titration data as training set and a historical cell culture data set as validation and prediction set. Finally, Raman spectroscopy data collected from 11 historical cell culture batches (spanning four culture modes and scales ranging from 3 to 200 L) were utilized to predict the corresponding glucose and lactate values. The results demonstrated a high prediction accuracy, with an average root mean square errors of prediction of 0.65 g/L for glucose, and 0.48 g/L for lactate. This innovative method establishes a generic metabolic calibration model, and its applicability can be extended to other metabolites, reducing the cost of deploying real-time cell culture monitoring using Raman spectroscopy in bioprocesses.

18.
Clin Rheumatol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625643

RESUMEN

OBJECTIVES: Gout is characterized by hyperuricemia and recurrent inflammatory episodes caused by intra-articular crystal deposition of monosodium urate (MSU). There is a clear relationship between gout and metabolic syndrome. Recent evidence indicates that perforin plays a role in regulating glucose homeostasis and provides protection in diet-induced non-alcoholic steatohepatitis models. However, the impact of perforin on immune inflammation in gout remains unclear. METHODS: We induced acute gout models in both wild-type (WT) mice and Prf1null mice by administering intra-articular injections of MSU crystals. We compared the ankle joint swelling and the histological score between the two groups. Furthermore, we investigated underlying mechanisms through in vitro co-culture experiments involving CD8 T cells and macrophages. RESULTS: In this study, Prf1null mice showed significantly more pronounced ankle swelling with increased inflammatory cell infiltrations compared with WT mice 24 h after local MSU injection. Moreover, MSU-induced Prf1null mice exhibited increased accumulation of CD8 T cells but not NK cells. Perforin-deficient CD8 T cells displayed reduced cytotoxicity towards bone marrow-derived M0 and M1 macrophages and promoted TNF-α secretion from macrophage. CONCLUSIONS: Perforin from CD8 T cells limits joint inflammation in mice with acute gout by downregulating macrophage-mediated inflammation. Key Points • Perforin deficiency increased swelling in the ankle joints of mice upon MSU injection. • Perforin deficiency is associated with increased immune cell recruitment and severe joint damage in gout. • Perforin regulated CD8 T cell accumulation in gout and promoted CD8 T cell cytotoxicity towards M0 and M1 macrophages. • CD8 T cell-derived perforin regulated pro-inflammatory cytokine secretion of macrophage.

19.
Curr Pharm Biotechnol ; 25(4): 499-509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572608

RESUMEN

Background: Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently.

Objective: The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation.

Methods: Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot.

Results: Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1.

Conclusion: This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway.

.


Asunto(s)
Medicamentos Herbarios Chinos , Infertilidad , Salpingitis , Humanos , Femenino , Ratas , Animales , Salpingitis/complicaciones , Salpingitis/metabolismo , Salpingitis/patología , Sistema de Señalización de MAP Quinasas , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Escherichia coli/metabolismo , Farmacología en Red , Infertilidad/complicaciones , Transducción de Señal , Inflamación/tratamiento farmacológico , Receptores ErbB/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
20.
PeerJ ; 12: e17312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685942

RESUMEN

Salinity stress imposes severe constraints on plant growth and development. Here, we explored the impacts of prohexadione-calcium (Pro-Ca) on rapeseed growth under salt stress. We designed a randomized block design pot experiment using two rapeseed varieties, 'Huayouza 158R' and 'Huayouza 62'. We conducted six treatments, S0: non-primed + 0 mM NaCl, Pro-Ca+S0: Pro-Ca primed + 0 mM NaCl, S100: non-primed + 100 mM NaCl, Pro-Ca+S100: Pro-Ca primed + 100 mM NaCl, S150: non-primed + 150 mM NaCl, Pro-Ca+S150: Pro-Ca primed + 150 mM NaCl. The morphophysiological characteristics, and osmoregulatory and antioxidant activities were compared for primed and non-primed varieties. Our data analysis showed that salt stress induced morph-physiological traits and significantly reduced the antioxidant enzyme activities in both rapeseed varieties. The Pro-Ca primed treatment significantly improved seedlings, root, and shoot morphological traits and accumulated more dry matter biomass under salt stress. Compared to Huayouza 158R, Huayouza 62 performed better with the Pro-Ca primed treatment. The Pro-Ca primed treatment significantly enhanced chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and actual photochemical quantum efficiency (ФPSII). Furthermore, the Pro-Ca primed treatment also improved ascorbic acid (ASA) content, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity, and stimulated the accumulation of soluble proteins. These findings strongly suggested that the Pro-Ca primed treatment may effectively counteract the negative impacts of salinity stress by regulating the morph-physiological and antioxidant traits.


Asunto(s)
Brassica napus , Calcio , Estrés Salino , Plantones , Brassica napus/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Calcio/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Clorofila/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...