Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(14): 6378-6385, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37418477

RESUMEN

Unidirectional magnetoresistance (UMR) has been intensively studied in ferromagnetic systems, which is mainly induced by spin-dependent and spin-flip electron scattering. Yet, UMR in antiferromagnetic (AFM) systems has not been fully understood to date. In this work, we reported UMR in a YFeO3/Pt heterostructure where YFeO3 is a typical AFM insulator. Magnetic-field dependence and temperature dependence of transport measurements indicate that magnon dynamics and interfacial Rashba splitting are two individual origins for AFM UMR, which is consistent with the UMR theory in ferromagnetic systems. We further established a comprehensive theoretical model that incorporates micromagnetic simulation, density functional theory calculation, and the tight-binding model, which explain the observed AFM UMR phenomenon well. Our work sheds light on the intrinsic transport property of the AFM system and may facilitate the development of AFM spintronic devices.

2.
Nano Lett ; 22(18): 7441-7448, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36099337

RESUMEN

Rashba spin-orbit coupling (SOC) could facilitate an efficient interconversion between spin and charge currents. Among various systems, BiTeI holds one of the largest Rashba-type spin splittings. Unlike other Rashba systems (e.g., Bi/Ag and Bi2Se3), an experimental investigation of the spin-to-charge interconversion in BiTeI remains to be explored. Through performing an angle-resolved photoemission spectroscopy (ARPES) measurement, such a large Rashba-type spin splitting with a Rashba parameter αR = 3.68 eV Å is directly identified. By studying the spin pumping effect in the BiTeI/NiFe bilayer, we reveal a very large inverse Rashba-Edelstein length λIREE ≈ 1.92 nm of BiTeI at room temperature. Furthermore, the λIREE monotonously increases to 5.00 nm at 60 K, indicating an enhanced Rashba SOC at low temperature. These results suggest that BiTeI films with the giant Rashba SOC are promising for achieving efficient spin-to-charge interconversion, which could be implemented for building low-power-consumption spin-orbitronic devices.

3.
Nanoscale ; 14(37): 13526-13531, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36039660

RESUMEN

Magnetic domain walls (DWs) in rare-earth-transition-metal (RE-TM) ferrimagnetic alloys can be used as information carriers in nonvolatile spintronic devices. Due to the rich combinations of RE-TM elements (such as CoGd, FeGd, CoTb, and FeTb in our case), it is intriguing to reveal the characteristics of DW dynamics in these wide choices of RE-TM compounds. Through a systematic study of the DW motion in thin films with different compositions of stacking order Pt(3 nm)/(Fe,Co)1-x(Gd,Tb)x(∼8 nm)/Ta(3 nm), we show that the partially compensated ferrimagnets CoGd and FeGd can exhibit a faster DW motion under various (in-plane and out-of-plane) magnetic fields driven by current-induced spin-orbit torques. In stark contrast with the fast motion of domain walls in Gd-based ferrimagnets, we find that the CoTb system exhibits much slower DW dynamics, and the FeTb system shows no motion, but evolved into a multi-domain state upon applying current pulses. Our results demonstrate that ferrimagnets CoGd and FeGd are more suitable candidates for achieving ultrafast DW motion, which could be useful for developing spintronic memory and logic devices.

4.
Phys Rev Lett ; 128(16): 167202, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35522502

RESUMEN

A broken interfacial inversion symmetry in ultrathin ferromagnet/heavy metal (FM/HM) bilayers is generally believed to be a prerequisite for accommodating the Dzyaloshinskii-Moriya interaction (DMI) and for stabilizing chiral spin textures. In these bilayers, the strength of the DMI decays as the thickness of the FM layer increases and vanishes around a few nanometers. In the present study, through synthesizing relatively thick films of compositions CoPt or FePt, CoCu or FeCu, FeGd and FeNi, contributions to DMI from the composition gradient-induced bulk magnetic asymmetry (BMA) and spin-orbit coupling (SOC) are systematically examined. Using Brillouin light scattering spectroscopy, both the sign and amplitude of DMI in films with controllable direction and strength of BMA, in the presence and absence of SOC, are experimentally studied. In particular, we show that a sizable amplitude of DMI (±0.15 mJ/m^{2}) can be realized in CoPt or FePt films with BMA and strong SOC, whereas negligible DMI strengths are observed in other thick films with BMA but without significant SOC. The pivotal roles of BMA and SOC are further examined based on the three-site Fert-Lévy model and first-principles calculations. It is expected that our findings may help to further understand the origin of chiral magnetism and to design novel noncollinear spin textures.

5.
Proc Natl Acad Sci U S A ; 118(20)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975955

RESUMEN

Bismuth and rare earth elements have been identified as effective substituent elements in the iron garnet structure, allowing an enhancement in magneto-optical response by several orders of magnitude in the visible and near-infrared region. Various mechanisms have been proposed to account for such enhancement, but testing of these ideas is hampered by a lack of suitable experimental data, where information is required not only regarding the lattice sites where substituent atoms are located but also how these atoms affect various order parameters. Here, we show for a Bi-substituted lutetium iron garnet how a suite of advanced electron microscopy techniques, combined with theoretical calculations, can be used to determine the interactions between a range of quantum-order parameters, including lattice, charge, spin, orbital, and crystal field splitting energy. In particular, we determine how the Bi distribution results in lattice distortions that are coupled with changes in electronic structure at certain lattice sites. These results reveal that these lattice distortions result in a decrease in the crystal-field splitting energies at Fe sites and in a lifted orbital degeneracy at octahedral sites, while the antiferromagnetic spin order remains preserved, thereby contributing to enhanced magneto-optical response in bismuth-substituted iron garnet. The combination of subangstrom imaging techniques and atomic-scale spectroscopy opens up possibilities for revealing insights into hidden coupling effects between multiple quantum-order parameters, thereby further guiding research and development for a wide range of complex functional materials.

6.
Adv Mater ; 33(12): e2006924, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33599001

RESUMEN

Magnetic skyrmions, topological-chiral spin textures, have potential applications in next-generation high-density and energy-efficient spintronic devices for information storage and logic technologies. Tailoring the detailed spin textures of skyrmions is of pivotal importance for tuning skyrmion dynamics, which is one of the key factors for the design of skyrmionic devices. Here, the direct observation of parallel aligned elliptical magnetic skyrmions in Pt/Co/Ta multilayers with an oblique-angle deposited Co layer is reported. Domain wall velocity and spin-orbit-torque-induced out-of-plane effective field analysis demonstrate that the formation of unusual elliptical skyrmions is correlated to the anisotropic effective perpendicular magnetic anisotropy energy density (Keff u ) and Dzyaloshinskii-Moriya interaction (DMI) in the film plane. Structural analysis and first-principles calculations further show that the anisotropic Keff u and DMI originate from the interfacial anisotropic strain introduced by the oblique-angle deposition. The work provides a method to tune the spin textures of skyrmions in magnetic multilayers and, thereby, a new degree of freedom for the design of skyrmionic devices.

7.
Phys Rev Lett ; 125(2): 027206, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32701308

RESUMEN

Noninteracting particles exhibiting Brownian motion have been observed in many occasions of sciences, such as molecules suspended in liquids, optically trapped microbeads, and spin textures in magnetic materials. In particular, a detailed examination of Brownian motion of spin textures is important for designing thermally stable spintronic devices, which motivates the present study. In this Letter, through using temporally and spatially resolved polar magneto-optic Kerr effect microscopy, we have experimentally observed the thermal fluctuation-induced random walk of a single isolated Néel-type magnetic skyrmion in an interfacially asymmetric Ta/CoFeB/TaO_{x} multilayer. An intriguing topology-dependent Brownian gyromotion behavior of skyrmions has been identified. The onset of Brownian gyromotion of a single skyrmion induced by thermal effects, including a nonlinear temperature-dependent diffusion coefficient and topology-dependent gyromotion are further formulated based on the stochastic Thiele equation. The experimental and numerical demonstration of topology-dependent Brownian gyromotion of skyrmions can be useful for understanding the nonequilibrium magnetization dynamics and implementing spintronic devices.

8.
ACS Appl Mater Interfaces ; 8(29): 18985-90, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27414403

RESUMEN

The bipolar resistive switching behavior in a device based on an crystalline iron-based organic-inorganic, perovskite-like material of (CH3NH3)2FeCl4 (MAFC), was examined and studied. Both high and low resistance states appeared to have no obvious degradation during a measurement period of 600 s with 400 cycles in a Ag/MAFC/Cu device, which also exhibited good thermal stability over a wide temperature range of 290 to 340 K. The conductivity-state switching behavior was derived from the competition between the ionic current within the MAFC and the Faradaic current that originated from oxidative reactions at the Ag/MAFC/Cu interface. A model explaining the oxidative reaction process was established to describe the symmetric resistive switching behavior in the Ag/MAFC/Cu cell. With an applied bias voltage sweeping, the oxidative layers passivated and dissipated at the Ag/MAFC/Cu interface that resulted in the competition between the induced current and the ionic current, and thus caused a symmetric resistance change. On the basis of this interfacial effect, the MAFC crystals can be used as memristor elements in devices for write-read-erase-rewrite process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...