Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473718

RESUMEN

The apetala2/ethylene response factor (AP2/ERF) gene family plays a crucial role in regulating plant growth and development and responding to different abiotic stresses (e.g., drought, heat, cold, and salinity). However, the knowledge of the ERF family in pearl millet remains limited. Here, a total of 167 high-confidence PgERF genes are identified and divided into five subgroups based on gene-conserved structure and phylogenetic analysis. Forty-one pairs of segmental duplication are found using collinear analysis. Nucleotide substitution analysis reveals these duplicated pairs are under positive purification, indicating they are actively responding to natural selection. Comprehensive transcriptomic analysis reveals that PgERF genesare preferentially expressed in the imbibed seeds and stem (tilling stage) and respond to heat, drought, and salt stress. Prediction of the cis-regulatory element by the PlantCARE program indicates that PgERF genes are involved in responses to environmental stimuli. Using reverse transcription quantitative real-time PCR (RT-qPCR), expression profiles of eleven selected PgERF genes are monitored in various tissues and during different abiotic stresses. Transcript levels of each PgERF gene exhibit significant changes during stress treatments. Notably, the PgERF7 gene is the only candidate that can be induced by all adverse conditions. Furthermore, four PgERF genes (i.e., PgERF22, PgERF37, PgERF88, and PgERF155) are shown to be involved in the ABA-dependent signaling pathway. These results provide useful bioinformatic and transcriptional information for understanding the roles of the pearl millet ERF gene family in adaptation to climate change.


Asunto(s)
Pennisetum , Filogenia , Proteínas de Plantas/genética , Etilenos
2.
Sci Rep ; 13(1): 19065, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925528

RESUMEN

Salt stress is one unfavorable factor of global climate change that adversely affects rice plant growth and yield. To identify novel salt-tolerant genes and new varieties of salt-tolerant rice, a better understanding of the molecular regulation mechanism of salt tolerance in rice is needed. In this study we used transcriptome analyses to examine changes in gene expression of salt-tolerant and salt-sensitive rice plants. The salt-tolerant cultivar HH11 and salt-sensitive cultivar IR29 were treated with 200 mM NaCl solution for 0 h, 6 h, 24 h and 48 h at the three leaf stage. Physiological parameters and transcriptome were measured and analyzed after each treatment. Activity of SOD and POD, as well as the MDA and protein content of the two rice cultivars generally increased with increasing time of exposure to NaCl. Meanwhile, the APX activity first increased, then decreased in both cultivars, with maximum values seen at 6 h for IR29 and at 24 h for HH11. The GR and GPX activity of HH11 were stronger than that of IR29 in response to salt stress. The H2O2 content first increased at 0-6 h, then decreased at 6-24 h, and then increased again at 24-48 h under salt stress. Compared with IR29, SOD, POD and APX activity of HH11 was more sluggish in response to salt stress, reaching the maximum at 24 h or 48 h. The MDA, H2O2 and proline content of HH11 was lower than that of IR29 under salt stress. Relative to untreated HH11 plants (0 h) and those exposed to salt for 6 h, 24 h, and 48 h (H0-H6, H0-H24 and H0-H48), 7462, 6363 and 6636, differentially expressed genes (DEGs), respectively, were identified. For IR29, the respective total DEGs were 7566, 6075 and 6136. GO and KEGG enrichment analysis showed that metabolic pathways related to antioxidative responses and osmotic balance played vital roles in salt stress tolerance. Sucrose and starch metabolism, in addition to flavonoid biosynthesis and glutathione metabolism, showed positive responses to salt stress. Expression of two SPS genes (LOC_Os01g69030 and LOC_Os08g20660) and two GST genes (LOC_Os06g12290 and LOC_Os10g38740) was up-regulated in both HH11 and IR29, whereas expression of LOC_Os09g12660, a glucose-1-phosphate adenylyltransferase gene, and two SS genes (LOC_Os04g17650 and LOC_Os04g24430) was up-regulated differential expression in HH11. The results showed that HH11 had more favorable adjustment in antioxidant and osmotic activity than IR29 upon exposure to salt stress, and highlighted candidate genes that could play roles in the function and regulation mechanism of salt tolerance in rice.


Asunto(s)
Oryza , Transcriptoma , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Estrés Salino/genética , Perfilación de la Expresión Génica , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
J Econ Entomol ; 116(4): 1276-1285, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37279557

RESUMEN

The whitefly, Bemisia tabaci, is a destructive and invasive pest of many horticultural plants including poinsettia (Euphorbia pulcherrima). Outbreaks of B. tabaci cause serious damage by direct feeding on phloem sap, and spreading 100+ plant viruses to crops. Bemisia tabaci were observed more frequently on green than red poinsettia leaves, and the factors responsible for this are unknown. Here, we investigated the development rate, survivorship, fecundity of B. tabaci feeding on green versus red leaves, as well as the leaves' volatiles, trichome density, anthocyanin content, soluble sugars, and free amino acids. Compared to red leaves, B. tabaci on green leaves showed increased fecundity, a higher female sex ratio, and survival rate. The green color alone was more attractive to B. tabaci than red. Red leaves of poinsettia contained more phenol, and panaginsene in their volatiles. Alpha-copaene and caryophyllene were more abundant in the volatiles of poinsettia green leaves. Leaf trichome density, soluble sugars and free amino acids were higher in green than red leaves of poinsettia, anthocyanin was lower in green than red leaves. Overall, green leaves of poinsettia were more susceptible and attractive to B. tabaci. The morphological and chemical variation between red and green leaves also differed; further investigation may reveal how these traits affect B. tabaci's responses.


Asunto(s)
Euphorbia , Hemípteros , Animales , Aminoácidos/análisis , Antocianinas/análisis , Hojas de la Planta/química , Tricomas , Masculino , Femenino
4.
J Insect Sci ; 23(2)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37052365

RESUMEN

Endosymbionts live symbiotically with insect hosts and play important roles in the evolution, growth, development, reproduction, and environmental fitness of hosts. Weevils are one of the most abundant insect groups that can be infected by various endosymbionts, such as Sodalis, Nardonella, and Wolbachia. The sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae), is a notorious pest in sweet potato (Ipomoea batatas L.) cultivation. Currently, little is known about the presence of endosymbionts in C. formicarius. Herein, we assessed the endosymbiont load of a single geographic population of C. formicarius. The results showed that Nardonella and Rickettsia could infect C. formicarius at different rates, which also varied according to the developmental stages of C. formicarius. The relative titer of Nardonella was significantly related to C. formicarius developmental stages. The Nardonella-infecting sweet potato weevils were most closely related to the Nardonella in Sphenophorus levis (Coleoptera, Curculionidae). The Rickettsia be identified in bellii group. These results preliminarily revealed the endosymbionts in C. formicarius and helped to explore the diversity of endosymbionts in weevils and uncover the physiological roles of endosymbionts in weevils.


Asunto(s)
Escarabajos , Ipomoea batatas , Gorgojos , Animales , Reproducción
5.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768807

RESUMEN

The MYB gene family widely exists in the plant kingdom and participates in the regulation of plant development and stress response. Pearl millet (Pennisetum glaucum (L.) R. Br.), as one of the most important cereals, is not only considered a good source of protein and nutrients but also has excellent tolerances to various abiotic stresses (e.g., salinity, water deficit, etc.). Although the genome sequence of pearl millet was recently published, bioinformatics and expression pattern analysis of the MYB gene family are limited. Here, we identified 208 PgMYB genes in the pearl millet genome and employed 193 high-confidence candidates for downstream analysis. Phylogenetic and structural analysis classified these PgMYBs into four subgroups. Eighteen pairs of segmental duplications of the PgMYB gene were found using synteny analysis. Collinear analysis revealed pearl millet had the closest evolutionary relationship with foxtail millet. Nucleotide substitution analysis (Ka/Ks) revealed PgMYB genes were under purifying positive selection pressure. Reverse transcription-quantitative PCR analysis of eleven R2R3-type PgMYB genes revealed they were preferentially expressed in shoots and seeds and actively responded to various environment stimuli. Current results provide insightful information regarding the molecular features of the MYB family in pearl millet to support further functional characterizations.


Asunto(s)
Pennisetum , Pennisetum/genética , Genes myb , Filogenia , Sintenía , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835268

RESUMEN

Sugarcane (Saccharum spp. hybrid) is frequently affected by seasonal drought, which causes substantial declines in quality and yield. To understand the drought resistance mechanisms of S. officinarum, the main species of modern sugarcane, at a molecular level, we carried out a comparative analysis of transcriptome and metabolome profiling of the sugarcane variety Badila under drought stress (DS). Compared with control group (CG) plants, plants exposed to DS had 13,744 (6663 up-regulated and 7081 down-regulated) differentially expressed genes (DEGs). GO and KEGG analysis showed that the DEGs were enriched in photosynthesis-related pathways and most DEGs had down-regulated expression. Moreover, the chlorophyll content, photosynthesis (Photo), stomatal conductance (Cond), intercellular carbon dioxide concentration (Ci) and transpiration rate (Trmmol) were sharply decreased under DS. These results indicate that DS has a significant negative influence on photosynthesis in sugarcane. Metabolome analysis identified 166 (37 down-regulated and 129 up-regulated) significantly regulated metabolites (SRMs). Over 50% of SRMs were alkaloids, amino acids and their derivatives, and lipids. The five most significantly enriched KEGG pathways among SRMs were Aminoacyl-tRNA biosynthesis, 2-Oxocarboxylic acid metabolism, Biosynthesis of amino acids, Phenylalanine metabolism, and Arginine and proline metabolism (p < 0.05). Comparing CG with DS for transcriptome and metabolome profiling (T_CG/DS and M_CG/DS, respectively), we found three of the same KEGG-enriched pathways, namely Biosynthesis of amino acids, Phenylalanine metabolism and Arginine and proline metabolism. The potential importance of Phenylalanine metabolism and Arginine and proline metabolism was further analyzed for response to DS in sugarcane. Seven SRMs (five up-regulated and two down-regulated) and 60 DEGs (17 up-regulated and 43 down-regulated) were enriched in Phenylalanine metabolism under DS, of which novel.31261, Sspon.04G0008060-1A, Sspon.04G0008060-2B and Sspon.04G0008060-3C were significantly correlated with 7 SRMs. In Arginine and proline metabolism, eight SRMs (seven up-regulated and one down-regulated) and 63 DEGs (32 up-regulated and 31 down-regulated) were enriched, of which Sspon.01G0026110-1A (OAT) and Sspon.03G0002750-3D (P5CS) were strongly associated with proline (r > 0.99). These findings present the dynamic changes and possible molecular mechanisms of Phenylalanine metabolism as well as Arginine and proline metabolism under DS and provide a foundation for future research and sugarcane improvement.


Asunto(s)
Saccharum , Transcriptoma , Saccharum/genética , Sequías , Aminoácidos/metabolismo , Prolina/metabolismo , Metaboloma , Arginina/metabolismo , Fenilalanina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
7.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077135

RESUMEN

Sugarcane (Saccharum spp. hybrid) is an important crop for sugar and biofuels, and often suffers from water shortages during growth. Currently, there is limited knowledge concerning the molecular mechanism involved in sugarcane response to drought stress (DS) and whether chitooligosaccharide could alleviate DS. Here, we carried out a combined transcriptome and metabolome of sugarcane in three different treatment groups: control group (CG), DS group, and DS + chitooligosaccharide group (COS). A total of 12,275 (6404 up-regulated and 5871 down-regulated) differentially expressed genes (DEGs) were identified when comparing the CG and DS transcriptomes (T_CG/DS), and 2525 (1261 up-regulated and 1264 down-regulated) DEGs were identified in comparing the DS and COS transcriptomes (T_DS/COS). GO and KEGG analysis showed that DEGs associated with photosynthesis were significantly enriched and had down-regulated expression. For T_DS/COS, photosynthesis DEGs were also significantly enriched but had up-regulated expression. Together, these results indicate that DS of sugarcane has a significantly negative influence on photosynthesis, and that COS can alleviate these negative effects. In metabolome analysis, lipids, others, amino acids and derivatives and alkaloids were the main significantly different metabolites (SDMs) observed in sugarcane response to DS, and COS treatment reduced the content of these metabolites. KEGG analysis of the metabolome showed that 2-oxocarboxylic acid metabolism, ABC transporters, biosynthesis of amino acids, glucosinolate biosynthesis and valine, leucine and isoleucine biosynthesis were the top-5 KEGG enriched pathways when comparing the CG and DS metabolome (M_CG/DS). Comparing DS with COS (M_DS/COS) showed that purine metabolism and phenylalanine metabolism were enriched. Combined transcriptome and metabolome analysis revealed that pyruvate and phenylalanine metabolism were KEGG-enriched pathways for CG/DS and DS/COS, respectively. For pyruvate metabolism, 87 DEGs (47 up-regulated and 40 down-regulated) and five SDMs (1 up-regulated and 4 down-regulated) were enriched. Pyruvate was closely related with 14 DEGs (|r| > 0.99) after Pearson's correlation analysis, and only 1 DEG (Sspon.02G0043670-1B) was positively correlated. For phenylalanine metabolism, 13 DEGs (7 up-regulated and 6 down-regulated) and 6 SDMs (1 up-regulated and 5 down-regulated) were identified. Five PAL genes were closely related with 6 SDMs through Pearson's correlation analysis, and the novel.31257 gene had significantly up-regulated expression. Collectively, our results showed that DS has significant adverse effects on the physiology, transcriptome, and metabolome of sugarcane, particularly genes involved in photosynthesis. We further show that COS treatment can alleviate these negative effects.


Asunto(s)
Saccharum , Transcriptoma , Aminoácidos/metabolismo , Quitosano , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oligosacáridos , Fenilalanina/metabolismo , Piruvatos/metabolismo , Saccharum/metabolismo
8.
Front Plant Sci ; 13: 952595, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160959

RESUMEN

Rice (Oryza sativa) is one of the most important food crops around the world, which is sensitive to salt stress, especially in the seedling and booting stage. HD961 is a salt-tolerant rice landrace that grows along coastal beaches and has disease and insect pest resistance, salt tolerance, and vigorous growth characteristics. We performed a combined transcriptome and metabolome analysis to clarify salinity resistance mechanisms in cultivar HD961, which has adapted to salinity soil at the early seedling stage. The results showed that the growth and antioxidant capacity of HD961 were stronger than 9311 under salt stress (SS). Transcriptomic analysis showed that a total of 6,145, 3,309, 1,819, and 1,296 differentially expressed genes (DEGs) were identified in the groups of TH60 (control group vs. 60 mM group of HD961 for transcriptome), TH120 (control group vs. 120 mM group of HD961 for transcriptome), T60 (control group vs. 60 mM group of 9311 for transcriptome), and T120 (control group vs. 120 mM group of 9311 for transcriptome), respectively. Starch and sucrose metabolism and phenylpropanoid biosynthesis were shared in the four treatment groups based on a KEGG enrichment analysis of DEGs. In addition, alpha-linolenic acid metabolism, plant hormone signal transduction, plant-pathogen interaction, and fatty acid elongation were specific and significantly different in HD961. A total of 92, 158, 151, and 179 significantly regulated metabolites (SRMs) responded to SS in MH60 (control group vs. 60 mM group of HD961 for metabolome), MH120 (control group vs. 120 mM group of HD961 for metabolome), M60 (control group vs. 60 mM group of 9311 for metabolome), and M120 (control group vs. 120 mM group of 9311 for metabolome), respectively. The KEGG analysis showed that eight common metabolic pathways were identified in the four treatment groups, of which biosynthesis of amino acids was the most significant. Three specific metabolic pathways were identified in the HD961, including glutathione metabolism, ascorbate and aldarate metabolism, and pantothenate and CoA biosynthesis. Integrative analysis between the transcriptome and metabolome showed that glutathione metabolism was specific and significantly affected under SS in HD961. A total of seven SRMs and 48 DEGs and four SRMs and 15 DEGs were identified in the glutathione metabolism pathway in HD961 and 9311, respectively. The Pearson correlation analysis showed a significant correlation between reduced glutathione and 16 genes (12 upregulated and four downregulated genes), suggesting these genes could be candidates as salt-tolerance regulation genes. Collectively, our data show that glutathione metabolism plays a critical role in response to SS in rice. Moreover, the stronger regulative ability of related common genes and metabolites might contribute to salt resistance in HD961.

9.
Foods ; 11(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35626968

RESUMEN

As a new type of salt-tolerant rice, sea red rice contains more minerals, proteins, and lipid compounds, and, in particular, its by-product rice bran may be used to replace other commercial rice brans as the main source of ceramides (Cers). However, the extraction rate of Cers is generally low, and it is crucial to seek an efficient extraction method. This study optimized the ultrasonic-assisted extraction of Cers from sea red rice bran using response surface methodology (RSM) and obtained a Cers yield of 12.54% under optimal conditions involving an extraction temperature of 46 °C, an extraction time of 46 min, and a material-to-liquid ratio of 5 g/mL. The Cers content in sea red rice bran was preliminarily analyzed using thin-layer chromatography, and the Cers content was determined via UHPLC-Triple-TOF-MS/MS after purification and separation using silica column chromatography. Forty-six different types of Cers were identified in sea red rice bran, of which Cer 18:0/24:0 (2OH), Cer 18:0/26:0, Cer 18:0/26:0 (2OH), and Cer 18:0/24:0 accounted for 23.66%, 17.54%, 14.91%, and 11.96%. Most of the Cers structures were mainly composed of sphingadienine. A biological activity assay indicated that Cers extracted from sea red rice bran had significant antioxidant and anti-aging properties. These findings indicate that the extracted Cers show great potential for applications in the cosmetic and pharmaceutical industries.

10.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35163547

RESUMEN

Salinity is one of the most common unfavorable environmental conditions that limits plant growth and development, ultimately reducing crop productivity. To investigate the underlying molecular mechanism involved in the salinity response in rice, we initially screened 238 rice cultivars after salt treatment at the seedling stage and identified two highly salt-tolerant cultivars determined by the relative damage rate parameter. The majority of cultivars (94.1%) were ranked as salt-sensitive and highly salt-sensitive. Transcriptome profiling was completed in highly salt-tolerant, moderately salt-tolerant, and salt-sensitive under water and salinity treatments at the seedling stage. Principal component analysis displayed a clear distinction among the three cultivars under control and salinity stress conditions. Several starch and sucrose metabolism-related genes were induced after salt treatment in all genotypes at the seedling stage. The results from the present study enable the identification of the ascorbate glutathione pathway, potentially participating in the process of plant response to salinity in the early growth stage. Our findings also highlight the significance of high-affinity K+ uptake transporters (HAKs) and high-affinity K+ transporters (HKTs) during salt stress responses in rice seedlings. Collectively, the cultivar-specific stress-responsive genes and pathways identified in the present study act as a useful resource for researchers interested in plant responses to salinity at the seedling stage.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Redes y Vías Metabólicas , Oryza/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Germinación , Oryza/clasificación , Oryza/genética , Proteínas de Plantas/genética , Salinidad , Estrés Salino , Plantones/clasificación , Plantones/genética , Almidón/biosíntesis , Sacarosa/metabolismo
11.
J Zhejiang Univ Sci B ; 8(12): 860-6, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18257118

RESUMEN

Brix weight per stool (BW) of sugarcane is a complex trait, which is the final product of a combination of many components. Diallel cross experiments were conducted during a period of two years for BW and its five component traits, including stalk diameter (SD), stalk length (SL), stalk number (SN), stalk weight (SW), and brix scale (BS) of sugarcane. Phenotypic data of all the six traits were analyzed by mixed linear model and their phenotype variances were portioned into additive (A), dominance (D), additive x environment interaction (AE) and dominance x environment interaction (DE) effects, and the correlations of A, D, AE and DE effects between BW and its components were estimated. Conditional analysis was employed to investigate the contribution of the components traits to the variances of A, D, AE and DE effects of BW. It was observed that the heritabilities of BW were significantly attributed to A, D and DE by 23.9%, 30.9% and 28.5%, respectively. The variance of A effect for BW was significantly affected by SL, SN and BS by 25.3%, 93.7% and 17.4%, respectively. The variances of D and DE effects for BW were also significantly influenced by all the five components by 5.1%(85.5%. These determinants might be helpful in sugarcane breeding and provide valuable information for multiple-trait improvement of BW.


Asunto(s)
Saccharum/anatomía & histología , Saccharum/genética , Alelos , Peso Corporal , Patrón de Herencia/genética , Fenotipo , Saccharum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...