Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
Talanta ; 280: 126681, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39142128

RESUMEN

Mildewed tobacco leaves seriously impact on cigarette product quality and pose a health risk to person. However, early moldy tobacco leaves are hardly found by naked eyes in the workshop. In this work, we self-assemble AuAg nanoalloys on silicon wafers to construct Si/AuAg chips. The headspace-surface enhanced Raman scattering (SERS) protocol is developed to monitor volatile 1,2-dichloro-3-methoxybenzene (2,3-DCA) and 2,4,6-trichloroanisole (2,4,6-TCA) released from postharvest tobacco. Consequently, the visualization of the SERS peak at 1592 cm-1 assigned to ν(CC) after headspace collection for 10 min and the SERS intensity ratio of 1054 and 1035 cm-1 from 2,3-DCA and 2,4,6-TCA less than 0.5 could be used as indicators to predict early moldy tobacco. Additionally, with headspace collection time prolonging to 2 h, a SERS band at 682 cm-1 due to ν(CCl) of 2,4,6-TCA occurs, confirming the mildew of leaves. The headspace-SERS protocol paves a path for rapid and on-site inspection of the quality of tobacco leaves and cigarettes during storage with a portable Raman system.

2.
Arch Biochem Biophys ; 759: 110109, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39117070

RESUMEN

Chronic inflammation is an important pathogenetic factor that leads to the progression of Alzheimer's disease (AD), and specialized pro-resolving lipid mediators (SPMs) play critical role in regulating inflammatory responses during AD pathogenesis. Maresin1 (MaR1) is the latest discovered SPMs, and it is found that MaR1 improves AD cognitive impairment by regulating neurotrophic pathways to protect AD synapses and reduce Aß production, which made MaR1 as candidate agent for AD treatment. Unfortunately, the underlying mechanisms are still largely known. In this study, the AD mice and cellular models were subjected to MaR1 treatment, and we found that MaR1 reduced Aß production to ameliorate AD-related symptoms and increased the expression levels of ADAM10/17, sAPPα and sAPPß to exert its anti-inflammatory role. In addition, as it was determined by Western Blot analysis, we observed that MaR1 could affected the neuroprotective signal pathways. Specifically, MaR1 downregulated p57NTR and upregulated TrkA to activate the p75NTR/TrkA signal pathway, and it could increase the expression levels of p-PI3K and p-Akt, and downregulated p-mTOR to activate the PI3K/AKT/ERK/mTOR pathway. Finally, we verified the role of ADAM10/17 in regulating AD progression, and we found that silencing of ADAM10/17 inactivated the above neuroprotective signal pathways to aggravate AD pathogenesis. In conclusion, MaR1 is verified as potential therapeutic agent for AD by eliminating Aß production, upregulating ADAM10/17, sAPPα and sAPPß, and activating the neuroprotective p75NTR/TrkA pathway and the PI3K/AKT/ERK/mTOR pathway.


Asunto(s)
Proteína ADAM10 , Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Ácidos Docosahexaenoicos , Transducción de Señal , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Transducción de Señal/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones , Inflamación/metabolismo , Proyectos Piloto , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Masculino
3.
Artículo en Inglés | MEDLINE | ID: mdl-38953888

RESUMEN

Two novel strain pairs (HM61T/HM23 and S-34T/S-58) were isolated from soil and the faeces of Tibetan antelope (Pantholops hodgsonii) collected at the Qinghai-Tibet Plateau of PR China. All four new isolates were aerobic, non-motile, Gram-stain-positive, catalase-positive, oxidase-negative, and short rod-shaped bacteria. The results of phylogenetic analysis based on the full-length 16S rRNA genes and 283 core genomic genes indicated that the four strains were separated into two independent branches belonging to the genus Nocardioides. Strains HM61T and HM23 were most closely related to Nocardioides pelophilus THG T63T (98.58 and 98.65 % 16S rRNA gene sequence similarity). Strains S-34T and S-58 were most closely related to Nocardioides okcheonensis MMS20-HV4-12T (98.89 and 98.89 % 16S rRNA gene sequence similarity). The G+C contents of the genomic DNA of strains HM61T and S-34T were 70.6 and 72.5 mol%, respectively. Strains HM61T, S-34T and the type strains of closely related species in the analysis had average nucleotide identity values of 75.4-90.5 % as well as digital DNA-DNA hybridization values between 20.1 and 40.8 %, which clearly indicated that the four isolates represent two novel species within the genus Nocardioides. The chemotaxonomic characteristics of strains HM61T and S-34T were consistent with the genus Nocardioides. The major fatty acids of all four strains were iso-C16 : 0, C17 : 1 ω8c or C18 : 1 ω9c. For strains HM61T and S-34T, MK-8(H4) was the predominant respiratory quinone, ll-2,6-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan, and the polar lipids profiles were composed of diphosphatidylglycerol and phosphatidylglycerol. Based on phylogenetic, phenotypic, and chemotaxonomic data, we propose that strains HM61T and S-34T represent two novel species of the genus Nocardioides, respectively, with the names Nocardioides bizhenqiangii sp. nov. and Nocardioides renjunii sp. nov. The type strains are HM61T (=GDMCC 4.343T=JCM 36399T) and S-34T (=CGMCC 4.7664T=JCM 33792T).


Asunto(s)
Antílopes , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Heces , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , Tibet , Ácidos Grasos/análisis , Ácidos Grasos/química , ADN Bacteriano/genética , Heces/microbiología , Antílopes/microbiología , Animales , China , Actinomycetales/genética , Actinomycetales/aislamiento & purificación , Actinomycetales/clasificación , Peptidoglicano , Fosfolípidos/análisis
4.
Protein J ; 43(4): 683-696, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39068631

RESUMEN

A recent study showed that just one point mutation F33 to Y in the complementarity-determining region 1 of heavy chain (H-CDR1) could lead to the auto-antibody losing its DNA binding ability. However, the potential molecular mechanisms have not been well elucidated. In this study, we investigated how the antibody lost the DNA binding ability caused by mutation F33 to Y in the H-CDR1. We found that the electrostatic force was not the primary driving force for the interaction between anti-DNA antibodies and the antigen single strand DNA (ssDNA), and that the H-CDR2 largely contributed to the binding of antigen ssDNA, even larger than H-CDR1. The H-F33Y mutation could increase the hydrogen-bond interaction but impair the pi-pi stacking interaction between the antibody and ssDNA. We further found that F33H, W98H and Y95L in the wiletype antibody could form the stable pi-pi stacking interaction with the nucleotide bases of ssDNA. However, the Y33 in mutant could not form the parallel sandwich pi-pi stacking interaction with the ssDNA. To further confirm the importance of pi-pi stacking, the wildtype antibody and the mutants (F33YH, F33AH, W98AH and Y95AL) were experimentally expressed in CHO cells and purified, and the results from ELISA clearly showed that all the mutants lost the ssDNA binding ability. Taken together, our findings may not only deepen the understanding of the underlying interaction mechanism between autoantibody and antigen, but also broad implications in the field of antibody engineer.


Asunto(s)
Regiones Determinantes de Complementariedad , ADN de Cadena Simple , Mutación Puntual , ADN de Cadena Simple/genética , ADN de Cadena Simple/química , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/química , Animales , Cricetulus , Células CHO , Autoanticuerpos/genética , Autoanticuerpos/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-39042107

RESUMEN

Six novel bacterial strains, designated N016T, N017, N022T, N028, N056T, and N064, were isolated from soil sampled on the Qinghai-Tibet Plateau. Cells were aerobic, orange or yellow, globular or rod-shaped, non-motile, non-spore-forming, Gram-stain-positive, catalase-positive and oxidase-negative. All the isolates were salt-tolerant and could grow in the range of 4-42 °C. Results of phylogenomic analyses based on 16S rRNA gene sequences and core genomic genes showed that the three pairs of strains (N016T/N017, N022T/N028, and N056T/N064) were closely related to the members of the genus Planococcus, and clustered with Planococcus ruber, Planococcus glaciei, and Planococcus chinensis. The digital DNA-DNA hybridization and average nucleotide identity values of the six novel strains with other members of the genus Planococcus were within the ranges of 18.7-53 % and 70.58-93.49 %, respectively, all below the respective recommended thresholds of 70.0 % and 95-96 %. The genomic DNA G+C content of the six strains ranged from 43.5 to 46.0 mol%. The major fatty acids of the six strains were anteiso-C15 : 0, iso-C14 : 0, and C16 : 1 ω7c alcohol. The predominant polar lipids of strains N016T, N022T, and N056T were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Menaquinones 7 and 8 were the respiratory quinones. The results of the above analyses indicated that the six strains represent three novel species of the genus Planococcus, for which the names Planococcus shenhongbingii sp. nov. (type strain N016T=GDMCC 1.4062T=JCM 36224T), Planococcus shixiaomingii sp. nov. (type strain N022T=GDMCC 1.4063T=JCM 36225T), and Planococcus liqunii sp. nov. (type strain N056T=GDMCC 1.4064T=JCM 36226T) are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , Planococcus (Bacteria) , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Tibet , Planococcus (Bacteria)/genética , Planococcus (Bacteria)/aislamiento & purificación , Planococcus (Bacteria)/clasificación , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Fosfolípidos/análisis
6.
Acta Biomater ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004329

RESUMEN

Calcium ions (Ca2+) participate in the regulation of cellular apoptosis as a second messenger. Calcium overload, which refers to the abnormal elevation of intracellular Ca2+ concentration, is a factor that can lead to cell death. Here, based on the unique biological effects of Ca2+, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed by a facile hydrolysis-precipitation method for drug-free tumor calcicoptosis therapy. The average pore size of the optimized HMCPN17 is 6.4 nm, and the surface area is 81.3 m2/g, which enables HMCPN17 with high drug loading capability. The Ca2+ release from HMCPN17 is much faster at pH 6.8 than that at pH 7.4, which can be ascribed to the acid-triggered conversion of HMCPN17 to Ca2+ and H2O2, indicating a pH-responsive decomposition behavior of HMCPN17. The high drug loading contents of doxorubicin (DOX) and/or sorafenib (SFN) indicate that HMCPN17 can be employed as a generic drug delivery system (DDS). The in vitro and in vivo results reinforce the high calcicoptosis therapeutic efficacy of tumors by our HMCPN17 without drug loading, which can be attributed to the efficient accumulation in tumors and the ability of H2O2 and Ca2+ production at acidic TME. Our HMCPN17 has broad application prospect for construction of multi-drug-loaded composite nanomaterials with diversified functions for the treatment of tumors. STATEMENT OF SIGNIFICANCE: The combination of hollow mesoporous nanomaterials and calcium peroxide nanoparticles has a wide range of applications in the synergistic treatment of tumors. In this study, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed based on a simple hydrolysis-precipitation method for tumor calcicoptosis therapy without drug loading. The high drug loading contents of DOX and/or SFN indicate that our HMCPN can serve as a generic DDS. The experimental results demonstrated the high calcicoptosis therapeutic efficacy of HMCPN on tumors even without drug loading.

7.
Bioresour Technol ; 406: 130987, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885724

RESUMEN

Biochar has been proved to improve methane production in high solids anaerobic co-digestion (HS-AcoD) of dewatered sludge (DS) and food waste (FW), but its potential mechanism for simultaneous methane production and phosphorus (P) transformation has not been sufficiently revealed. Results showed that the optimal preparation temperature and dosage of sludge-based biochar were selected as 300 °C and 0.075 g·g-1, respectively. Under this optimized condition, the methane production of the semi-continuous reactor increased by 54%, and the active phosphorus increased by 18%. The functional microorganisms, such as Methanosarcina, hydrogen-producing, sulfate-reducing, and iron-reducing bacteria, were increased. Metabolic pathways associated with sulfate reduction and methanogenesis, especially hydrogenotrophic methanogenesis, were enhanced, which in turn promoted methanogenesis and phosphorus transformation and release. This study provides theoretical support for simultaneously recovery of carbon and phosphorus resources from DS and FW using biochar.


Asunto(s)
Reactores Biológicos , Carbón Orgánico , Metano , Fósforo , Aguas del Alcantarillado , Metano/metabolismo , Aguas del Alcantarillado/microbiología , Carbón Orgánico/química , Anaerobiosis , Alimentos , Alimento Perdido y Desperdiciado
8.
mSystems ; 9(7): e0053224, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38934548

RESUMEN

Prevotella copri is the dominant species of the Prevotella genus in the gut, which is genomically heterogeneous and difficult to isolate; hence, scarce research was carried out for this species. This study aimed to investigate the effect of P. copri on hyperglycemia. Thirty-nine strains were isolated from healthy individuals, and three strains (HF2123, HF1478, and HF2130) that had the highest glucose consumption were selected to evaluate the effects of P. copri supplementation on hyperglycemia. Microbiomics and non-target metabolomics were used to uncover the underlying mechanisms. Oral administration of P. copri in diabetic db/db mice increased the expression and secretion of glucagon-like peptide-1 (GLP-1), significantly improved hyperglycemia, insulin resistance, and lipid accumulation, and alleviated the pathological morphology in the pancreas, liver, and colon. P. copri changed the composition of the gut microbiota of diabetic db/db mice, which was characterized by increasing the ratio of Bacteroidetes to Firmicutes and increasing the relative abundance of genera Bacteroides, Akkermansia, and Faecalibacterium. After intervention with P. copri, fecal metabolic profiling showed that fumaric acid and homocysteine contents decreased, and glutamine contents increased. Furthermore, amino acid metabolism and cAMP/PKA signaling pathways were enriched. Our findings indicate that P. copri improved glucose metabolism abnormalities in diabetic db/db mice. Especially, one of the P. copri strains, HF2130, has shown superior performance in improving hyperglycemia, which may have the potential as a probiotic against hyperglycemia. IMPORTANCE: As a core member of the human intestinal ecosystem, Prevotelal copri has been associated with glucose metabolic homeostasis in previous studies. However, these results have often been derived from metagenomic studies, and the experimental studies have been based solely on the type of strain DSM 18205T. Therefore, more experimental evidence from additional isolates is needed to validate the results according to their high genomic heterogeneity. In this study, we isolated different branches of strains and demonstrated that P. copri could improve the metabolic profile of hyperglycemic mice by modulating microbial activity. This finding supports the causal contribution of P. copri in host glucose metabolism.


Asunto(s)
Microbioma Gastrointestinal , Hiperglucemia , Metaboloma , Prevotella , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Hiperglucemia/metabolismo , Ratones , Metaboloma/efectos de los fármacos , Masculino , Probióticos/farmacología , Probióticos/administración & dosificación , Probióticos/uso terapéutico , Ratones Endogámicos C57BL , Humanos , Péptido 1 Similar al Glucagón/metabolismo
9.
Heliyon ; 10(11): e31885, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845987

RESUMEN

Background: Dystonia is a kind of movement disorder but its pathophysiological mechanisms are still largely unknown. Recent evidence reveals that genetical defects may play important roles in the pathogenesis of dystonia. Objectives and Methods: -To explore possible causative genes in Chinese dystonia patients, DNA samples from 42 sporadic patients with isolated cervical dystonia were subjected to whole-exome sequencing. Rare deleterious variants associated with dystonia phenotype were screened out and then classified according to the American College of Medical Genetics and Genomics (ACMG) criteria. Phenolyzer was used for analyzing the most probable candidates correlated with dystonia phenotype, and SWISS-MODEL server was for predicting the 3D structures of variant proteins. Results: Among 42 patients (17 male and 25 female) recruited, a total of 36 potentially deleterious variants of dystonia-associated genes were found in 30 patients (30/42, 71.4 %). Four disease-causing variants including a pathogenic variant in PLA2G6 (c.797G > C) and three likely pathogenic variants in DCTN1 (c.73C > T), SPR (c.1A > C) and TH (c.56C > G) were found in four patients separately. Other 32 variants were classified as uncertain significance in 26 patients. Phenolyzer prioritized genes TH, PLA2G6 and DCTN1 as the most probable candidates correlated with dystonia phenotype. Although 3D prediction of DCTN1 and PLA2G6 variant proteins detected no obvious structural alterations, the mutation in DCTN1 (c.73C > T:p.Arg25Trp) was closely adjacent to its key functional domain. Conclusion: Our whole-exome sequencing results identified a novel variant in DCTN1 in sporadic Chinese patients with isolated cervical dystonia, which however, needs our further study on its exact role in dystonia pathogenesis.

10.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822535

RESUMEN

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Asunto(s)
Micorrizas , Nitrógeno , Microbiología del Suelo , Suelo , Micorrizas/fisiología , Micorrizas/metabolismo , Nitrógeno/metabolismo , Suelo/química , Plantas/metabolismo , Plantas/microbiología , Ecosistema
11.
Plant Physiol Biochem ; 213: 108863, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917739

RESUMEN

Alternative splicing enhances diversity at the transcriptional and protein levels that widely involved in plant response to biotic and abiotic stresses. V. amurensis is an extremely cold-tolerant wild grape variety, however, studies on alternative splicing (AS) in amur grape at low temperatures are currently poorly understood. In this study, we analyzed full-length transcriptome and RNA seq data at 0, 2, and 24 h after cold stress in V. amurensis roots. Following quality control and correction, 221,170 high-quality full-length non-concatemer (FLNC) reads were identified. A total of 16,181 loci and 30,733 isoforms were identified. These included 22,868 novel isoforms from annotated genes and 2815 isoforms from 2389 novel genes. Among the distinguished novel isoforms, 673 Long non-coding RNAs (LncRNAs) and 18,164 novel isoforms open reading frame (ORF) region were found. A total of 2958 genes produced 8797 AS events, of which 189 genes were involved in the low-temperature response. Twelve transcription factors show AS during cold treatment and VaMYB108 was selected for initial exploration. Two transcripts, Chr05.63.1 (VaMYB108short) and Chr05.63.2 (VaMYB108normal) of VaMYB108, display up-regulated expression after cold treatment in amur grape roots and are both localized in the nucleus. Only VaMYB108normal exhibits transcriptional activation activity. Overexpression of either VaMYB108short or VaMYB108normal in grape roots leads to increased expression of the other transcript and both increased chilling resistance of amur grape roots. The results improve and supplement the genome annotations and provide insights for further investigation into AS mechanisms during cold stress in V. amurensis.


Asunto(s)
Empalme Alternativo , Frío , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Transcriptoma , Vitis , Vitis/genética , Empalme Alternativo/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética
12.
Am J Transl Res ; 16(5): 2034-2048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883374

RESUMEN

OBJECTIVE: Aggregating evidence highlights the strong genetic basis underpinning congenital heart disease (CHD). Here BMP4 was chosen as a prime candidate gene causative of human CHD predominantly because BMP4 was amply expressed in the embryonic hearts and knockout of Bmp4 in mice led to embryonic demise mainly from multiple cardiovascular developmental malformations. The aim of this retrospective investigation was to discover a novel BMP4 mutation underlying human CHD and explore its functional impact. METHODS: A sequencing examination of BMP4 was implemented in 212 index patients suffering from CHD and 236 unrelated non-CHD individuals as well as the family members available from the proband carrying a discovered BMP4 mutation. The impacts of the discovered CHD-causing mutation on the expression of NKX2-5 and TBX20 induced by BMP4 were measured by employing a dual-luciferase analysis system. RESULTS: A new heterozygous BMP4 mutation, NM_001202.6:c.318T>G;p.(Tyr106*), was found in a female proband affected with familial CHD. Genetic research of the mutation carrier's relatives unveiled that the truncating mutation was in co-segregation with CHD in the pedigree. The nonsense mutation was absent from 236 unrelated non-CHD control persons. Quantitative biologic measurement revealed that Tyr106*-mutant BMP4 failed to induce the expression of NKX2-5 and TBX20, two genes whose expression is lost in CHD. CONCLUSION: The current findings indicate BMP4 as a new gene predisposing to human CHD, allowing for improved prenatal genetic counseling along with personalized treatment of CHD patients.

13.
J Clin Invest ; 134(13)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743498

RESUMEN

One of the features of pathological cardiac hypertrophy is enhanced translation and protein synthesis. Translational inhibition has been shown to be an effective means of treating cardiac hypertrophy, although system-wide side effects are common. Regulators of translation, such as cardiac-specific long noncoding RNAs (lncRNAs), could provide new, more targeted therapeutic approaches to inhibit cardiac hypertrophy. Therefore, we generated mice lacking a previously identified lncRNA named CARDINAL to examine its cardiac function. We demonstrate that CARDINAL is a cardiac-specific, ribosome-associated lncRNA and show that its expression was induced in the heart upon pathological cardiac hypertrophy and that its deletion in mice exacerbated stress-induced cardiac hypertrophy and augmented protein translation. In contrast, overexpression of CARDINAL attenuated cardiac hypertrophy in vivo and in vitro and suppressed hypertrophy-induced protein translation. Mechanistically, CARDINAL interacted with developmentally regulated GTP-binding protein 1 (DRG1) and blocked its interaction with DRG family regulatory protein 1 (DFRP1); as a result, DRG1 was downregulated, thereby modulating the rate of protein translation in the heart in response to stress. This study provides evidence for the therapeutic potential of targeting cardiac-specific lncRNAs to suppress disease-induced translational changes and to treat cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia , Biosíntesis de Proteínas , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Humanos , Ratones Noqueados , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
14.
J Autoimmun ; 146: 103235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696926

RESUMEN

Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.


Asunto(s)
Artritis Experimental , Linfocitos B , Vesículas Extracelulares , Células T Auxiliares Foliculares , Animales , Artritis Experimental/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Células T Auxiliares Foliculares/inmunología , Masculino , Artritis Reumatoide/inmunología , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Traslado Adoptivo , Ligando de CD40/metabolismo , Ligando de CD40/inmunología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Índice de Severidad de la Enfermedad , Femenino
15.
BMJ Open ; 14(5): e083228, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772899

RESUMEN

INTRODUCTION: Patients with liver cancer are susceptible to experiencing a decline in muscle mass and function, which can lead to physical frailty and have a negative impact on prognosis. However, there is currently a lack of physical activity interventions specifically tailored for these patients. Therefore, we have developed a modular multimodal hospital-home chain physical activity rehabilitation programme (3M2H-PARP) designed specifically for patients with liver cancer undergoing transarterial chemoembolisation (TACE). We aim to validate the effectiveness and feasibility of this programme through a randomised controlled trial (RCT). METHODS AND ANALYSIS: 3M2H-PARP RCT will compare a 12-week, modular, multimodal physical activity rehabilitation programme that includes supervised exercise in a hospital setting and self-management exercise at home. The programmes consist of aerobic, resistance, flexibility and balance exercise modules, and standard survivorship care in a cohort of liver cancer survivors who have undergone TACE. The control group will receive standard care. A total of 152 participants will be randomly assigned to either the 3M2H-PARP group or the control group. Assessments will be conducted at three time points: baseline, after completing the intervention and a 24-week follow-up visit. The following variables will be evaluated: liver frailty index, Functional Assessment of Cancer Therapy-Hepatobiliary subscale, Cancer Fatigue Scale, Pittsburgh Sleep Quality Index, Hospital Anxiety and Depression Scale and physical activity level. After the completion of the training programme, semi-structured interviews will be conducted with participants from the 3M2H-PARP group to investigate the programme's impact on their overall well-being. SPSS V.26.0 software will be used for statistical analyses. ETHICS AND DISSEMINATION: Ethical approval has been granted by the Jiangnan University School of Medicine Research Ethics Committee. The findings will be disseminated through publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: ChiCTR2300076800.


Asunto(s)
Terapia por Ejercicio , Neoplasias Hepáticas , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Terapia por Ejercicio/métodos , Neoplasias Hepáticas/rehabilitación , Calidad de Vida , Quimioembolización Terapéutica/métodos , Femenino , Ejercicio Físico , Masculino
16.
Sci Rep ; 14(1): 11240, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755191

RESUMEN

Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Factor 2 Relacionado con NF-E2 , Óxido Nítrico Sintasa de Tipo III , Animales , Ratas , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/prevención & control , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
17.
Sensors (Basel) ; 24(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793857

RESUMEN

Bearings are crucial components of machinery and equipment, and it is essential to inspect them thoroughly to ensure a high pass rate. Currently, bearing scratch detection is primarily carried out manually, which cannot meet industrial demands. This study presents research on the detection of bearing surface scratches. An improved YOLOV5 network, named YOLOV5-CDG, is proposed for detecting bearing surface defects using scratch images as targets. The YOLOV5-CDG model is based on the YOLOV5 network model with the addition of a Coordinate Attention (CA) mechanism module, fusion of Deformable Convolutional Networks (DCNs), and a combination with the GhostNet lightweight network. To achieve bearing surface scratch detection, a machine vision-based bearing surface scratch sensor system is established, and a self-made bearing surface scratch dataset is produced as the basis. The scratch detection final Average Precision (AP) value is 97%, which is 3.4% higher than that of YOLOV5. Additionally, the model has an accuracy of 99.46% for detecting defective and qualified products. The average detection time per image is 263.4 ms on the CPU device and 12.2 ms on the GPU device, demonstrating excellent performance in terms of both speed and accuracy. Furthermore, this study analyzes and compares the detection results of various models, demonstrating that the proposed method satisfies the requirements for detecting scratches on bearing surfaces in industrial settings.

18.
Nanoscale ; 16(21): 10318-10324, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738311

RESUMEN

The study of structural isomerism in copper nanoclusters has been relatively limited compared to that in gold and silver nanoclusters. In this work, we present the controlled synthesis and structures of two isomeric copper nanoclusters, denoted as Cu22-1 and Cu22-2, whose compositions were determined to be Cu22(SePh)10(Se)6(P(Ph-4F)3)8 through single-crystal X-ray diffraction (SCXRD). The structural isomerism of Cu22-1 and Cu22-2 arises from the different arrangements of a few Cu(SeR)(PR3) motifs on the surface structure. These subtle changes in the surface structure also influence the distortion of the core and the spatial arrangement of the clusters, and affect the electronic structure. Furthermore, due to their distinct structures, Cu22-1 and Cu22-2 exhibit different catalytic properties in the copper-catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC). Notably, Cu22-1 demonstrates efficient catalytic activity for photoinduced AAC, achieving a yield of 90% within 1 hour. This research contributes to the understanding of structural isomerism in copper nanoclusters and offers insights into the structure-function relationship in these systems.

19.
Entropy (Basel) ; 26(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785642

RESUMEN

This paper develops a thermodynamic entropy-based life prediction model to estimate the low-cycle fatigue (LCF) life of the nickel-based superalloy GH4169 at elevated temperature (650 °C). The gauge section of the specimen was chosen as the thermodynamic system for modeling entropy generation within the framework of the Chaboche viscoplasticity constitutive theory. Furthermore, an explicitly numerical integration algorithm was compiled to calculate the cyclic stress-strain responses and thermodynamic entropy generation for establishing the framework for fatigue life assessment. A thermodynamic entropy-based life prediction model is proposed with a damage parameter based on entropy generation considering the influence of loading ratio. Fatigue lives for GH4169 at 650 °C under various loading conditions were estimated utilizing the proposed model, and the results showed good consistency with the experimental results. Finally, compared to the existing classical models, such as Manson-Coffin, Ostergren, Walker strain, and SWT, the thermodynamic entropy-based life prediction model provided significantly better life prediction results.

20.
Int Immunopharmacol ; 133: 112036, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640713

RESUMEN

BACKGROUND: Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS: The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS: 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1ß). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION: Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.


Asunto(s)
Berberina , Biología Computacional , Lipocalina 2 , FN-kappa B , Farmacología en Red , Encefalopatía Asociada a la Sepsis , Animales , Humanos , Masculino , Ratones , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Berberina/farmacología , Berberina/uso terapéutico , Modelos Animales de Enfermedad , Regulación hacia Abajo , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Lipocalina 2/genética , Lipocalina 2/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedades Neuroinflamatorias/tratamiento farmacológico , FN-kappa B/metabolismo , Mapas de Interacción de Proteínas , Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA