Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957991

RESUMEN

BACKGROUND: Cerebral vascular malformations (CCMs) are primarily found within the brain, where they result in increased risk for stroke, seizures, and focal neurological deficits. The unique feature of the brain vasculature is the blood-brain barrier formed by the brain neurovascular unit. Recent studies suggest that loss of CCM genes causes disruptions of blood-brain barrier integrity as the inciting events for CCM development. CCM lesions are proposed to be initially derived from a single clonal expansion of a subset of angiogenic venous capillary endothelial cells (ECs) and respective resident endothelial progenitor cells (EPCs). However, the critical signaling events in the subclass of brain ECs/EPCs for CCM lesion initiation and progression are unclear. METHODS: Brain EC-specific CCM3-deficient (Pdcd10BECKO) mice were generated by crossing Pdcd10fl/fl mice with Mfsd2a-CreERT2 mice. Single-cell RNA-sequencing analyses were performed by the chromium single-cell platform (10× genomics). Cell clusters were annotated into EC subtypes based on visual inspection and GO analyses. Cerebral vessels were visualized by 2-photon in vivo imaging and tissue immunofluorescence analyses. Regulation of mTOR (mechanistic target of rapamycin) signaling by CCM3 and Cav1 (caveolin-1) was performed by cell biology and biochemical approaches. RESULTS: Single-cell RNA-sequencing analyses from P10 Pdcd10BECKO mice harboring visible CCM lesions identified upregulated CCM lesion signature and mitotic EC clusters but decreased blood-brain barrier-associated EC clusters. However, a unique EPC cluster with high expression levels of stem cell markers enriched with mTOR signaling was identified from early stages of the P6 Pdcd10BECKO brain. Indeed, mTOR signaling was upregulated in both mouse and human CCM lesions. Genetic deficiency of Raptor (regulatory-associated protein of mTOR), but not of Rictor (rapamycin-insensitive companion of mTOR), prevented CCM lesion formation in the Pdcd10BECKO model. Importantly, the mTORC1 (mTOR complex 1) pharmacological inhibitor rapamycin suppressed EPC proliferation and ameliorated CCM pathogenesis in Pdcd10BECKO mice. Mechanistic studies suggested that Cav1/caveolae increased in CCM3-depleted EPC-mediated intracellular trafficking and complex formation of the mTORC1 signaling proteins. CONCLUSIONS: CCM3 is critical for maintaining blood-brain barrier integrity and CCM3 loss-induced mTORC1 signaling in brain EPCs initiates and facilitates CCM pathogenesis.

2.
Res Sq ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292911

RESUMEN

Serum response factor (SRF) controls gene transcription in vascular smooth muscle cells (VSMCs) and regulates VSMC phenotypic switch from a contractile to a synthetic state, which plays a key role in the pathogenesis of cardiovascular diseases (CVD). SRF activity is regulated by its associated cofactors. However, it is not known how post-translational SUMOylation regulates the SRF activity in CVD. Here, we show that Senp1 deficiency in VSMCs increased SUMOylated SRF and the SRF-ELK complex, leading to augmented vascular remodeling and neointimal formation in mice. Mechanistically, SENP1 deficiency in VSMCs increased SRF SUMOylation at lysine 143, which reduced its lysosomal localization concomitant with increased nuclear accumulation. SUMOylation of SRF switched its binding with the contractile phenotype-responsive cofactor myocardin to binding with the synthetic phenotype-responsive cofactor phosphorylated ELK1. Both SUMOylated SRF and phosphor-ELK1 were increased in VSMCs from coronary arteries of CVD patients. Importantly, preventing the shift from SRF-myocardin to SRF-ELK complex by AZD6244 inhibited the excessive proliferative, migratory, and synthetic phenotypes, attenuating neointimal formation in Senp1-deficient mice. Therefore, targeting the SRF complex may have a therapeutic potential for the treatment of CVD.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35667709

RESUMEN

Cerebral cavernous malformations (CCMs), consisting of multiple, dilated capillary channels formed by a single layer of endothelium and lacking parenchymal cells, are exclusively to the brain. Patients with inherited autosomal-dominant CCMs carry loss-of-function mutations in one of three genes: CCM1, CCM2, and CCM3. It is not known why CCM lesions are confined to brain vasculature despite the ubiquitous expression of CCM proteins in all tissues, and whether cell types other than endothelial cells (ECs) contribute to CCM lesion formation. The prevailing view is that the primary defects in CCMs in humans are EC-intrinsic, such that EC-specific deletion of any one of the three genes in mice results in similar CCM lesions. An unexpected finding is that Ccm3 deletion in pericytes (PCs) also induces CCM lesions. CCM3 deletion in ECs or PCs destabilizes PC-EC associations, highlighting the importance of these interactions in CCM formation.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Animales , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Células Endoteliales/patología , Pericitos/metabolismo , Pericitos/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo
4.
Nat Commun ; 13(1): 7637, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496409

RESUMEN

Although mitochondrial activity is critical for angiogenesis, its mechanism is not entirely clear. Here we show that mice with endothelial deficiency of any one of the three nuclear genes encoding for mitochondrial proteins, transcriptional factor (TFAM), respiratory complex IV component (COX10), or redox protein thioredoxin 2 (TRX2), exhibit retarded retinal vessel growth and arteriovenous malformations (AVM). Single-cell RNA-seq analyses indicate that retinal ECs from the three mutant mice have increased TGFß signaling and altered gene expressions associated with vascular maturation and extracellular matrix, correlating with vascular malformation and increased basement membrane thickening in microvesels of mutant retinas. Mechanistic studies suggest that mitochondrial dysfunction from Tfam, Cox10, or Trx2 depletion induces a mitochondrial localization and MAPKs-mediated phosphorylation of SMAD2, leading to enhanced ALK5-SMAD2 signaling. Importantly, pharmacological blockade of ALK5 signaling or genetic deficiency of SMAD2 prevented retinal vessel growth retardation and AVM in all three mutant mice. Our studies uncover a novel mechanism whereby mitochondrial dysfunction via the ALK5-SMAD2 signaling induces retinal vascular malformations, and have therapeutic values for the alleviation of angiogenesis-associated human retinal diseases.


Asunto(s)
Malformaciones Arteriovenosas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Proteína Smad2 , Animales , Ratones , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Fosforilación , Transducción de Señal , Proteína Smad2/genética , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 41(12): 2943-2960, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34670407

RESUMEN

OBJECTIVE: Cerebral cavernous malformations (CCMs) can happen anywhere in the body, although they most commonly produce symptoms in the brain. The role of CCM genes in other vascular beds outside the brain and retina is not well-examined, although the 3 CCM-associated genes (CCM1, CCM2, and CCM3) are ubiquitously expressed in all tissues. We aimed to determine the role of CCM gene in lymphatics. Approach and Results: Mice with an inducible pan-endothelial cell (EC) or lymphatic EC deletion of Ccm3 (Pdcd10ECKO or Pdcd10LECKO) exhibit dilated lymphatic capillaries and collecting vessels with abnormal valve structure. Morphological alterations were correlated with lymphatic dysfunction in Pdcd10LECKO mice as determined by Evans blue dye and fluorescein isothiocyanate(FITC)-dextran transport assays. Pdcd10LECKO lymphatics had increased VEGFR3 (vascular endothelial growth factor receptor-3)-ERK1/2 (extracellular signal-regulated kinase 1/2) signaling with lymphatic hyperplasia. Mechanistic studies suggested that VEGFR3 is primarily regulated at a transcriptional level in Ccm3-deficient lymphatic ECs, in an NF-κB (nuclear factor κB)-dependent manner. CCM3 binds to importin alpha 2/KPNA2 (karyopherin subunit alpha 2), and a CCM3 deletion releases KPNA2 to activate NF-κB P65 by facilitating its nuclear translocation and P65-dependent VEGFR3 transcription. Moreover, increased VEGFR3 in lymphatic EC preferentially activates ERK1/2 signaling, which is critical for lymphatic EC proliferation. Importantly, inhibition of VEGFR3 or ERK1/2 rescued the lymphatic defects in structure and function. CONCLUSIONS: Our data demonstrate that CCM3 deletion augments the VEGFR3-ERK1/2 signaling in lymphatic EC that drives lymphatic hyperplasia and malformation and warrant further investigation on the potential clinical relevance of lymphatic dysfunction in patients with CCM.


Asunto(s)
Endotelio Linfático/fisiopatología , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Sistema de Señalización de MAP Quinasas/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Células Cultivadas , Células Endoteliales/fisiología , Endotelio Linfático/patología , Femenino , Eliminación de Gen , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Hiperplasia , Masculino , Ratones Endogámicos , Modelos Animales , FN-kappa B/genética , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...