Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400330, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676545

RESUMEN

Copper is widely used in everyday life and industrial production because of its good electrical and thermal conductivity. To overcome copper oxidation and maintain its good physical properties, small organic molecules adsorbed on the surface of copper make a passivated layer to further avoid copper corrosion. In this work, we have investigated thioglycolic acid (TGA, another name is mercaptoacetic acid) adsorbed on copper surfaces by using density functional theory (DFT) calculations and a periodical slab model. We first get five stable adsorption structures, and the binding interaction between TGA and Cu(111) surfaces by using density of states (DOS), indicating that the most stable configuration adopts a triple-end binding model. Then, we analyze the vibrational Raman spectra of TGA adsorbed on the Cu(111) surface and make vibrational assignments according to the vibrational vectors. Finally, we explore the temperature effect of the thermodynamically Gibbs free energy of TGA on the Cu(111) surface and the antioxidant ability of the small organic molecular layer of copper oxidation on the copper surface. Our calculated results further provide evidences to interpret the stability of adsorption structures and antioxidant properties of copper.

2.
J Phys Chem Lett ; 14(22): 5163-5171, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37253105

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) has been widely applied in the identification and characterization of DNA structures with high efficiency. Especially, the SERS signals of the adenine group have exhibited high detection sensitivity in several biomolecular systems. However, there is still no unanimous conclusion regarding the interpretation of some special kinds of SERS signals of adenine and its derivatives on silver colloids and electrodes. This Letter presents a new photochemical azo coupling reaction for adenyl residues, in which the adenine is selectively oxidized to (E)-1,2-di(7H-purin-6-yl) diazene (azopurine) in the presence of silver ions, silver colloids, and electrodes of nanostructures under visible light irradiation. The product, azopurine, is first found to be responsible for the SERS signals. This photoelectrochemical oxidative coupling reaction of adenine and its derivatives is promoted by plasmon-mediated hot holes and is regulated by positive potentials and pH of solutions, which opens up new avenues for studying azo coupling in the photoelectrochemistry of adenine-containing biomolecules on electrode surfaces of plasmonic metal nanostructures.

3.
ACS Appl Mater Interfaces ; 14(28): 31911-31919, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35796315

RESUMEN

The quality of perovskite films plays a crucial role in the performance of the corresponding devices. However, the commonly employed perovskite polycrystalline films often contain a high density of defects created during film production and cell operation, including unsaturated coordinated Pb2+ and Pb0, which can act as nonradiative recombination centers, thus reducing open-circuit voltage. Effectively eliminating both kinds of defects is an important subject of research to improve the power conversion efficiency (PCE). Here, we employ hydrogen octylphosphonate potassium (KHOP) as a multifunctional additive to passivate defects. The molecule is introduced into perovskite precursor solution to regulate the perovskite film growth process by coordinating with Pb, which can not only passivate the Pb2+ defect but also effectively inhibit the production of Pb0; at the same time, the presence of K+ reduces device hysteresis by inhibiting I- migration and finally realizes double passivation of Pb2+ and I--based defects. Moreover, the moderate hydrophobic alkyl chain in the molecule improves the moisture stability. Ultimately, the optimal efficiency can reach 22.21%.

4.
J Am Chem Soc ; 144(9): 3821-3832, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35199991

RESUMEN

Surface plasmon resonance (SPR) bridges photonics and photoelectrochemistry by providing an effective interaction between absorption and confinement of light to surface electrons of plasmonic metal nanostructures (PMNs). SPR enhances the Raman intensity enormously in surface-enhanced Raman spectroscopy (SERS) and leads to the plasmon-mediated chemical reaction on the surface of nanostructured metal electrodes. To observe variations in chemical reactivity and selectivity, we studied the SPR photoelectrochemical reactions of para-aminobenzoic acid (PABA) on nanostructured gold electrodes. The head-to-tail coupling product "4-[(4-imino-2,5-cyclohexadien-1-ylidene)amino]benzoic acid (ICBA)" and the head-to-head coupling product p,p'-azodibenzoate (ADBA) were obtained from PABA adsorbed on PMN-modified gold electrodes. In particular, under acidic and neutral conditions, ICBA was obtained as the main product, and ADBA was obtained as the minor product. At the same time, under basic conditions, ADBA was obtained as the major product, and ICBA was obtained as the minor product. We have also provided sufficient evidence for the oxidation of the tail-to-tail coupling reaction product that occurred in a nonaqueous medium rather than in an aqueous medium. The above finding was validated by the cyclic voltammetry, SERS, and theoretical calculation results of possible reaction intermediates, namely, 4-aminophenlylenediamine, 4-hydroxyphenlylenediamine, and benzidine. The theoretical adsorption model and experimental results indicated that PABA has been adsorbed as para-aminobenzoate on the gold cluster in a bidentate configuration. This work offers a new view toward the modulation of selective surface catalytic coupling reactions on PMN, which benefits the hot carrier transfer efficiency at photoelectrochemical interfaces.


Asunto(s)
Oro , Nanoestructuras , Ácido 4-Aminobenzoico , Electrodos , Oro/química , Nanoestructuras/química , Resonancia por Plasmón de Superficie/métodos
5.
Phys Chem Chem Phys ; 23(38): 22119-22132, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34580687

RESUMEN

The investigation of the structural characteristics of chiral drugs in physiological environments is a challenging research topic, which may lead to a better understanding of how the drugs work. Raman optical activity (ROA) spectroscopy in combination with density functional theory (DFT) calculations was exploited to inspect the structural changes in penicillamine under different acid-base states in aqueous solutions. The B3LYP/aug-cc-PVDZ method was employed and the implicit solvation model density (SMD) was considered for describing the solvation effect in H2O. The conformations of penicillamine varied with pH, but penicillamine was liable to stabilize in the form of the PC conformation (the sulfur atom is in a trans orientation with respect to carboxylate) in most cases for both D- and L-isomers. The relationship between the conformations of penicillamine and the ROA peaks, as well as peak assignments, were comprehensively studied and elucidated. In the fingerprint region, two ROA couplets and one ROA triplet with different patterns were recognized. The intensity, sign and frequency of the corresponding peaks also changed with varying pH. Deuteration was carried out to identify the vibrational modes, and the ROA peaks of the deuterated amino group in particular are sensitive to change in the ambient environment. The results are expected not only to serve as a reference for the interpretation of the ROA spectra of penicillamine and other chiral drugs with analogous structures but also to evaluate the structural changes of chiral molecules in physiological environments, which will form the basis of further exploration of the effects of structural characteristics on the pharmacological and toxicological properties of chiral drugs.


Asunto(s)
Teoría Funcional de la Densidad , Penicilamina/química , Concentración de Iones de Hidrógeno , Conformación Molecular , Espectrometría Raman , Estereoisomerismo
6.
J Am Chem Soc ; 142(41): 17489-17498, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32941020

RESUMEN

An attractive field of plasmon-mediated chemical reactions (PMCRs) is developing rapidly, but there is still incomplete understanding of how to control the kinetics of such a reaction related to hot carriers. Here, we chose 8-bromoadenine (8BrAd) as a probe molecule of hot electrons to investigate the influence of the electrode potential, laser wavelength, and power on the PMCR kinetics on silver nanoparticle-modified silver electrodes. Plasmonic hot electron-mediated cleavage of the C-Br bond in 8BrAd has been investigated by combining in situ electrochemical surface-enhanced Raman spectroscopy and density functional theory calculations. The experimental and theoretical results reveal that the energy position of plasmon relaxation-generated hot electrons can be modulated conveniently by applied potentials and laser light. This allows the proposal of a mechanism of modulating the matching energy of the hot electron of plasmon relaxation to promote the efficiency of PMCRs in electrochemical interfaces. Our work will be helpful to design surface plasmon resonance photoelectrochemical reactions on metal electrode surfaces of nanostructures with higher efficiency.

7.
J Am Chem Soc ; 141(4): 1665-1671, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30608680

RESUMEN

Perovskite solar cells are strong competitors for silicon-based ones, but suffer from poor long-term stability, for which the intrinsic stability of perovskite materials is of primary concern. Herein, we prepared a series of well-defined cesium-containing mixed cation and mixed halide perovskite single-crystal alloys, which enabled systematic investigations on their structural stabilities against light, heat, water, and oxygen. Two potential phase separation processes are evidenced for the alloys as the cesium content increases to 10% and/or bromide to 15%. Eventually, a highly stable new composition, (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05, emerges with a carrier lifetime of 16 µs. It remains stable during at least 10 000 h water-oxygen and 1000 h light stability tests, which is very promising for long-term stable devices with high efficiency. The mechanism for the enhanced stability is elucidated through detailed single-crystal structure analysis. Our work provides a single-crystal-based paradigm for stability investigation, leading to the discovery of stable new perovskite materials.

8.
Acc Chem Res ; 49(11): 2596-2604, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27668827

RESUMEN

In the past several decades, electrochemical machining (ECM) has enjoyed the reputation of a powerful technique in the manufacturing industry. Conventional ECM methods can be classified as electrolytic machining and electroforming: the former is based on anodic dissolution and the latter is based on cathodic deposition of metallic materials. Strikingly, ECM possesses several advantages over mechanical machining, such as high removal rate, the capability of making complex three-dimensional structures, and the practicability for difficult-to-cut materials. Additionally, ECM avoids tool wear and thermal or mechanical stress on machining surfaces. Thus, ECM is widely used for various industrial applications in the fields of aerospace, automobiles, electronics, etc. Nowadays, miniaturization and integration of functional components are becoming significant in ultralarge scale integration (ULSI) circuits, microelectromechanical systems (MEMS), and miniaturized total analysis systems (µ-TAS). As predicted by Moore's law, the feature size of interconnectors in ULSI circuits are down to several nanometers. In this Account, we present our perseverant research in the last two decades on how to "confine" the ECM processes to occur at micrometer or even nanometer scale, that is, to ensure ECM with nanoscale accuracy. We have been developing the confined etchant layer technique (CELT) to fabricate three-dimensional micro- and nanostructures (3D-MNS) on different metals and semiconductor materials since 1992. In general, there are three procedures in CELT: (1) generating the etchant on the surface of the tool electrode by electrochemical or photoelectrochemical reactions; (2) confining the etchant in a depleted layer with a thickness of micro- or nanometer scale; (3) feeding the tool electrode to etch the workpiece. Scavengers, which can react with the etchant, are usually adopted to form a confined etchant layer. Through the subsequent homogeneous reaction between the scavenger and the photo- or electrogenerated etchant in the electrolyte solution, the diffusion distance of the etchant is confined to micro- or nanometer scale, which ensures the nanoscale accuracy of electrochemical machining. To focus on the "confinement" of chemical etching reactions, external physical-field modulations have recently been introduced into CELT by introducing various factors such as light field, force field, hydrodynamics, and so on. Meanwhile, kinetic investigations of the confined chemical etching (CCE) systems are established based on the finite element analysis and simulations. Based on the obtained kinetic parameters, the machining accuracy is tunable and well controlled. CELT is now applicable for 1D milling, 2D polishing, and 3D microfabrication with an accuracy at nanometer scale. CELT not only inherits all the advantages of electrochemical machining but also provides advantages over photolithography and nanoimprint for its applicability to different functional materials without involving any photocuring and thermoplastic resists. Although there are some technical problems, for example, mass transfer and balance, which need to be solved, CELT has shown its prospective competitiveness in electrochemical micromachining, especially in the semiconductor industry.

9.
Phys Chem Chem Phys ; 18(27): 18112-8, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27327514

RESUMEN

Organolead halide perovskites exhibit superior photoelectric properties, which have given rise to the perovskite-based solar cells whose power conversion efficiency has rapidly reached above 20% in the past few years. However, perovskite-based solar cells have also encountered problems such as current-voltage hysteresis and degradation under practical working conditions. Yet investigations into the intrinsic chemical nature of the perovskite material and its role on the performance of the solar cells are relatively rare. In this work, Raman spectroscopy is employed together with CASTEP calculations to investigate the organic-inorganic interactions in CH3NH3PbI3 and CH3NH3PbBr3-xClx perovskite single crystals with comparison to those having ammonic acid as the cations. For Raman measurements of CH3NH3PbI3, a low energy line of 1030 nm is used to avoid excitation of strong photoluminescence of CH3NH3PbI3. Raman spectra covering a wide range of wavenumbers are obtained, and the restricted rotation modes of CH3-NH3(+) embedded in CH3NH3PbBr3 (325 cm(-1)) are overwhelmingly stronger over the other vibrational bands of the cations. However, the band intensity diminishes dramatically in CH3NH3PbBr3-xClx and most of the bands shift towards high frequency, indicating the interaction with the halides. The details of such an interaction are further revealed by inspecting the band shift of the restricted rotation mode as well as the C-N, NH3(+) and CH3 stretching of the CH3NH3(+) as a function of Cl composition and length of the cationic ammonic acids. The results show that the CH3NH3(+) interacts with the PbX3(-) octahedral framework via the NH3(+) end through N(+)-HX hydrogen bonding whose strength can be tuned by the composition of halides but is insensitive to the size of the organic cations. Moreover, an increase of the Cl content strengthens the hydrogen bonding and thus blueshifts the C-N stretching bands. This is due to the fact that Cl is more electronegative than Br and an increase of the Cl content decreases the lattice constant of the perovskite. The findings of the present work are valuable in understanding the role of cations and halides in the performance of MAPbX3-based perovskite solar cells.

10.
Chem Commun (Camb) ; 51(100): 17700-3, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26489368

RESUMEN

We report synergetic effect enhanced photoelectrocatalysis, in which Fe(3+) and Br(-) are used as the acceptors of photogenerated charges on TiO2 nanoparticles. The kinetic rate of interfacial charge transfer is promoted from (4.0 ± 0.5) × 10(-4) cm s(-1) (TiO2/(O2, Br(-))) to (1.5 ± 0.5) × 10(-3) cm s(-1) (TiO2/(Fe(3+), Br(-))). The synergetic effect provides a valuable approach to the design of photoelectrocatalytic systems.


Asunto(s)
Bromo/química , Procesos Fotoquímicos , Titanio/efectos de la radiación , Bromuros/química , Catálisis , Técnicas Electroquímicas , Electrodos , Compuestos Férricos/química , Tecnología Química Verde , Cinética , Luz , Nanopartículas , Oxidación-Reducción , Oxígeno/química , Titanio/química
11.
Chem Commun (Camb) ; 49(57): 6451-3, 2013 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-23756448

RESUMEN

A photoinduced confined chemical etching system based on TiO2 nanotube arrays is developed for the planarization of the copper surface, which is proved to be a prospective stress-free chemical planarization method for metals and semiconductors.

12.
J Am Chem Soc ; 135(5): 1926-33, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23339400

RESUMEN

Metal-organic frameworks (MOFs) and related material classes are attracting considerable attention for their applications in gas storage/separation as well as catalysis. In contrast, research concerning potential uses in electronic devices (such as sensors) is in its infancy, which might be due to a great challenge in the fabrication of MOFs and semiconductor composites with well-designed structures. In this paper, we proposed a simple self-template strategy to fabricate metal oxide semiconductor@MOF core-shell heterostructures, and successfully obtained freestanding ZnO@ZIF-8 nanorods as well as vertically standing arrays (including nanorod arrays and nanotube arrays). In this synthetic process, ZnO nanorods not only act as the template but also provide Zn(2+) ions for the formation of ZIF-8. In addition, we have demonstrated that solvent composition and reaction temperature are two crucial factors for successfully fabricating well-defined ZnO@ZIF-8 heterostructures. As we expect, the as-prepared ZnO@ZIF-8 nanorod arrays display distinct photoelectrochemical response to hole scavengers with different molecule sizes (e.g., H(2)O(2) and ascorbic acid) owing to the limitation of the aperture of the ZIF-8 shell. Excitingly, such ZnO@ZIF-8 nanorod arrays were successfully applied to the detection of H(2)O(2) in the presence of serous buffer solution. Therefore, it is reasonable to believe that the semiconductor@MOFs heterostructure potentially has promising applications in many electronic devices including sensors.


Asunto(s)
Nanotubos/química , Compuestos Organometálicos/química , Zeolitas/química , Óxido de Zinc/química , Estructura Molecular , Procesos Fotoquímicos , Semiconductores
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 26(10): 1829-32, 2006 Oct.
Artículo en Chino | MEDLINE | ID: mdl-17205731

RESUMEN

The adsorption and oxidation of 1-butanol in alkaline media on a platinum electrode were investigated mainly by EQCM and in situ FTIR spectroscopy. The experimental results demonstrate that the electrooxidation of 1-butanol is closely relative to solution acidity. Since no chemically adsorbed species, such as CO, were evidenced by in situ FTIR spectroscopy, the adsorption of 1-butanol or its dissociative products on Pt surface is suggested by EQCM and CV data. Only one current peak of 1-butanol oxidation in PGPS was detected at -0.23 V/SCE, which illustrated the disappearance of the second current peak due to Pt electrode passivation in alkaline media. The final product of 1-butanol oxidation is only butyric acid anion under experimental condition. It may therefore be suggested that the main reaction occurring at the electrode is the oxidation of 1-butanol to butyric acid anion. The EQCM studies provide quantitative results of surface mass variation and have shed light on elucidating 1-butanol oxidation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...