Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
1.
ACS Nano ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723039

RESUMEN

Transition metal oxides are promising catalysts for catalytic oxidation reactions but are hampered by low room-temperature activities. Such low activities are normally caused by sparse reactive sites and insufficient capacity for molecular oxygen (O2) activation. Here, we present a dual-stimulation strategy to tackle these two issues. Specifically, we import highly dispersed nickel (Ni) atoms onto MnO2 to enrich its oxygen vacancies (reactive sites). Then, we use molecular ozone (O3) with a lower activation energy as an oxidant instead of molecular O2. With such dual stimulations, the constructed O3-Ni/MnO2 catalytic system shows boosted room-temperature activity for toluene oxidation with a toluene conversion of up to 98%, compared with the O3-MnO2 (Ni-free) system with only 50% conversion and the inactive O2-Ni/MnO2 (O3-free) system. This leap realizes efficient room-temperature catalytic oxidation of transition metal oxides, which is constantly pursued but has always been difficult to truly achieve.

2.
ACS Nano ; 18(19): 12512-12523, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701404

RESUMEN

Ether-based electrolytes are among the most important electrolytes for potassium-ion batteries (PIBs) due to their low polarization voltage and notable compatibility with potassium metal. However, their development is hindered by the strong binding between K+ and ether solvents, leading to [K+-solvent] cointercalation on graphite anodes. Herein, we propose a partially and weakly solvating electrolyte (PWSE) wherein the local solvation environment of the conventional 1,2-dimethoxyethane (DME)-based electrolyte is efficiently reconfigured by a partially and weakly solvating diethoxy methane (DEM) cosolvent. For the PWSE in particular, DEM partially participates in the solvation shell and weakens the chelation between K+ and DME, facilitating desolvation and suppressing cointercalation behavior. Notably, the solvation structure of the DME-based electrolyte is transformed into a more cation-anion-cluster-dominated structure, consequently promoting thin and stable solid-electrolyte interphase (SEI) generation. Benefiting from optimized solvation and SEI generation, the PWSE enables a graphite electrode with reversible K+ (de)intercalation (for over 1000 cycles) and K with reversible plating/stripping (the K||Cu cell with an average Coulombic efficiency of 98.72% over 400 cycles) and dendrite-free properties (the K||K cell operates over 1800 h). We demonstrate that rational PWSE design provides an approach to tailoring electrolytes toward stable PIBs.

3.
J Virol ; : e0049424, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757985

RESUMEN

Mitochondria are energy producers in cells, which can affect viral replication by regulating the host innate immune signaling pathways, and the changes in their biological functions are inextricably linked the viral life cycle. In this study, we screened a library of 382 mitochondria-targeted compounds and identified the antiviral inhibitors of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo synthesis pathway of pyrimidine ribonucleotides, against classical swine fever virus (CSFV). Our data showed that the inhibitors interfered with viral RNA synthesis in a dose-dependent manner, with half-maximal effective concentrations (EC50) ranging from 0.975 to 26.635 nM. Remarkably, DHODH inhibitors obstructed CSFV replication by enhancing the innate immune response including the TBK1-IRF3-STAT1 and NF-κB signaling pathways. Furthermore, the data from a series of compound addition and supplementation trials indicated that DHODH inhibitors also inhibited CSFV replication by blocking the de novo pyrimidine synthesis. Remarkably, DHODH knockdown demonstrated that it was essential for CSFV replication. Mechanistically, confocal microscopy and immunoprecipitation assays showed that the non-structural protein 4A (NS4A) recruited and interacted with DHODH in the perinuclear. Notably, NS4A enhanced the DHODH activity and promoted the generation of UMP for efficient viral replication. Structurally, the amino acids 65-229 of DHODH and the amino acids 25-40 of NS4A were pivotal for this interaction. Taken together, our findings highlight the critical role of DHODH in the CSFV life cycle and offer a potential antiviral target for the development of novel therapeutics against CSF. IMPORTANCE: Classical swine fever remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. dihydroorotate dehydrogenase (DHODH) inhibitors have been shown to suppress the replication of several viruses in vitro and in vivo, but the effects on Pestivirus remain unknown. In this study, three specific DHODH inhibitors, including DHODH-IN-16, BAY-2402234, and Brequinar were found to strongly suppress classical swine fever virus (CSFV) replication. These inhibitors target the host DHODH, depleting the pyrimidine nucleotide pool to exert their antiviral effects. Intriguingly, we observed that the non-structural protein 4A of CSFV induced DHODH to accumulate around the nucleus in conjunction with mitochondria. Moreover, NS4A exhibited a strong interaction with DHODH, enhancing its activity to promote efficient CSFV replication. In conclusion, our findings enhance the understanding of the pyrimidine synthesis in CSFV infection and expand the novel functions of CSFV NS4A in viral replication, providing a reference for further exploration of antiviral targets against CSFV.

4.
J Mol Histol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758519

RESUMEN

Cadmium is a toxic heavy metal, which is both an environmental pollutant, and a threat to human health. A fluorescent probe was developed to detect Cd2+ selectively, sensitively, and quickly. This study reports the successful development of a polypeptide fluorescent probe TPE-HC (TPE-His-Pro-Gly-Cys) which selectively detects Cd2+ by Aggregation-Induced Emission effect. After fluorescence excitation, Cd2+ can be effectively detected based on the change of fluorescence intensity. The detection limit of Cd2+ in buffer solution was determined to be 151 nM (R2 = 0.9933). This probe exhibits high sensitivity, high cell permeabilit y, and low biological toxicity, and can perform live cell imaging under biological conditions. This study indicates that TPE-HC can detect Cd2+ in biological environments.

5.
ACS Nano ; 18(20): 13415-13427, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727526

RESUMEN

Layered oxide cathode materials may undergo irreversible oxygen loss and severe phase transitions during high voltage cycling and may be susceptible to transition metal dissolution, adversely affecting their electrochemical performance. Here, to address these challenges, we propose synergistic doping of nonmetallic elements and in situ electrochemical diffusion as potential solution strategies. Among them, the distribution of the nonmetallic element fluorine within the material can be regulated by doping boron, thereby suppressing manganese dissolution through surface enrichment of fluorine. Furthermore, in situ electrochemical diffusion of fluorine from the surface into the bulk of the materials after charging reduces the energy barrier of potassium ion diffusion while effectively inhibiting irreversible oxygen loss under high voltage. The modified K0.5Mn0.83Mg0.1Ti0.05B0.02F0.1O1.9 layered oxide cathode exhibits a high capacity of 147 mAh g-1 at 50 mA g-1 and a long cycle life of 2200 cycles at 500 mA g-1. This work demonstrates the efficacy of synergistic doping and in situ electrochemical diffusion of nonmetallic elements and provides valuable insights for optimizing rechargeable battery materials.

6.
Angew Chem Int Ed Engl ; : e202405153, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709123

RESUMEN

Current potassium-ion batteries (PIBs) are limited in safety and lifetime owing to the lack of suitable electrolyte solutions. To address these issues, herein, we report an innovative non-flammable electrolyte design strategy that leverages an optimal moderate solvation phosphate-based solvent which strikes a balance between solvation capability and salt dissociation ability, leading to superior electrochemical performance. The formulated electrolyte simultaneously exhibits the advantages of low salt concentration (only 0.6 M), low viscosity, high ionic conductivity, high oxidative stability, and safety. Our electrolyte also promotes the formation of self-limiting inorganic-rich interphases at the anode surface, alongside robust cathode-electrolyte interphase on iron-based Prussian blue analogues, mitigating electrode/electrolyte side reactions and preventing Fe dissolution. Notably, the PIBs employing our electrolyte exhibit exceptional durability, with 80% capacity retention after 2,000 cycles at high-voltage of 4.2 V in a coin cell. Impressively, in a larger scale pouch cell, it maintains over 81% of its initial capacity after 1,400 cycles at 1C-rate with high average Coulombic efficiency of 99.6%. This work represents a significant advancement toward the realization of safe, sustainable, and high-performance PIBs.

7.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710705

RESUMEN

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Asunto(s)
Argininosuccinato Sintasa , Proliferación Celular , Fosfoglicerato-Deshidrogenasa , Serina , Neoplasias de la Mama Triple Negativas , Fosfoglicerato-Deshidrogenasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Serina/metabolismo , Serina/biosíntesis , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Animales , Argininosuccinato Sintasa/metabolismo , Argininosuccinato Sintasa/genética , Línea Celular Tumoral , Ratones Desnudos , Ubiquitinación , Ratones , Glicina/metabolismo
8.
ACS Omega ; 9(15): 17577-17591, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645374

RESUMEN

In this study, graphene oxide (GO) was modified via electrostatic interactions and chemical grafting by silica (SiO2), and two SiO2@GO hybrids (GO-A and GO-B, respectively) with different structures were obtained and carefully characterized. Results confirmed the successful grafting of SiO2 onto the GO surface using both strategies. The distribution of SiO2 particles on the surface of GO-A was denser and more agglomerated, while it was more uniform on the surface of GO-B. Then, epoxy resin (EP)/GO composites were prepared. The curing mechanism of EP/GO composites was studied by differential scanning calorimetry and in situ infrared spectra spectroscopy. Results of tensile tests, hardness tests, dynamic mechanical analysis, and dielectric measurement revealed that EP/GO-B exhibited the highest tensile properties, with a tensile strength of 79 MPa, a 43% increase compared to raw EP. Furthermore, the addition of fillers improved the hardness of EP, and EP/GO-B showed the highest energy storage modulus of 1900 MPa. The inclusion of SiO2@GO hybrid fillers enhanced the dielectric constant, volume resistivity, and breakdown voltage of EP/GO composites. Among these, EP/GO-B displayed the lowest dielectric loss, relatively good insulation, and relatively high volume resistivity and breakdown voltage. A related mechanism was proposed.

9.
Heliyon ; 10(8): e29232, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660265

RESUMEN

Herbal Gentiana straminea Maxim. (Family Gentianaceae), "Ma Hua Jiao" in Chinese, is a commonly used Chinese medicine. Secoiridoids and flavonoids have been identified as the major active components of herbal medicines used in the treatment of hepatitis, rheumatism and many other diseases. It is the overharvesting of the roots of this plant for medicinal purposes that has led to a drastic decline in its population. In the present study, the above and below ground parts of Gentian Bitter Glycine were quantitatively compared and evaluated for the determination of the major active constituents. Five major compounds, loganic acid, swertiamarin, gentiopicroside, sweorside and isoorientin, were extracted by solvent extraction technique and analyzed by Reversed-phase High Performance Liquid Chromatography (RP-HPLC). By analysing the principal components and calculating the composite scores, the results show that the aboveground component in different areas ranked higher compared to the underground component, with the former being able to substitute to some extent for the latter's underground component. Finally, based on hierarchical cluster analysis, we identified the ideal natural growing region for aerial parts of G. straminea distributed on the Qinghai-Tibetan Plateau. The significance of this work is that we can balance the demand for herbs with environmental preservation by selectively picking the aerial parts, which can regrow next year, instead of removing the whole plant. It protects the fragile ecological environment of the Tibetan Plateau and is important for sustainable development.

10.
Angew Chem Int Ed Engl ; : e202403269, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597257

RESUMEN

Ether-based electrolyte is beneficial to obtaining good low-temperature performance and high ionic conductivity in potassium ion batteries. However, the dilute ether-based electrolytes usually result in ion-solvent co-intercalation of graphite, poor cycling stability, and hard to withstand high voltage cathodes above 4.0 V. To address the aforementioned issues, an electron-withdrawing group (chloro-substitution) was introduced to regulate the solid-electrolyte interphase (SEI) and enhance the oxidative stability of ether-based electrolytes. The dilute (~0.91 M) chloro-functionalized ether-based electrolyte not only facilitates the formation of homogeneous dual halides-based SEI, but also effectively suppress aluminum corrosion at high voltage. Using this functionalized electrolyte, the K||graphite cell exhibits a stability of 700 cycles, the K||Prussian blue (PB) cell (4.3 V) delivers a stability of 500 cycles, and the PB||graphite full-cell reveals a long stability of 6000 cycles with a high average Coulombic efficiency of 99.98 %. Additionally, the PB||graphite full-cell can operate under a wide temperature range from -5 °C to 45 °C. This work highlights the positive impact of electrolyte functionalization on the electrochemical performance, providing a bright future of ether-based electrolytes application for long-lasting, wide-temperature, and high Coulombic efficiency PIBs and beyond.

11.
Nat Commun ; 15(1): 2735, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548738

RESUMEN

The optimization of crystalline orientation of a Zn metal substrate to expose more Zn(0002) planes has been recognized as an effective strategy in pursuit of highly reversible Zn metal anodes. However, the lattice mismatch between substrate and overgrowth crystals has hampered the epitaxial sustainability of Zn metal. Herein, we discover that the presence of crystal grains deviating from [0001] orientation within a Zn(0002) metal anode leads to the failure of epitaxial mechanism. The electrodeposited [0001]-uniaxial oriented Zn metal anodes with a single (0002) texture fundamentally eliminate the lattice mismatch and achieve ultra-sustainable homoepitaxial growth. Using high-angle angular dark-filed scanning transmission electron microscopy, we elucidate the homoepitaxial growth of the deposited Zn following the "~ABABAB~" arrangement on the Zn(0002) metal from an atomic-level perspective. Such consistently epitaxial behavior of Zn metal retards dendrite formation and enables improved cycling, even in Zn||NH4V4O10 pouch cells, with a high capacity of 220 mAh g-1 for over 450 cycles. The insights gained from this work on the [0001]-oriented Zn metal anode and its persistently homoepitaxial mechanism pave the way for other metal electrodes with high reversibility.

12.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542356

RESUMEN

Nucleic acid modifications play important roles in biological activities and disease occurrences, and have been considered as cancer biomarkers. Due to the relatively low amount of nucleic acid modifications in biological samples, it is necessary to develop sensitive and reliable qualitative and quantitative methods to reveal the content of any modifications. In this review, the key processes affecting the qualitative and quantitative analyses are discussed, such as sample digestion, nucleoside extraction, chemical labeling, chromatographic separation, mass spectrometry detection, and data processing. The improvement of the detection sensitivity and specificity of analytical methods based on mass spectrometry makes it possible to study low-abundance modifications and their biological functions. Some typical nucleic acid modifications and their potential as biomarkers are displayed, and efforts to improve diagnostic accuracy are discussed. Future perspectives are raised for this research field.


Asunto(s)
Ácidos Nucleicos , Espectrometría de Masas/métodos , Biomarcadores de Tumor
13.
Proteomics Clin Appl ; : e2300032, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456388

RESUMEN

PURPOSE: Diabetic retinopathy (DR), as one of the microvascular complications of diabetes, is a leading cause of acquired vision loss. Most DR cases are detected in the advanced stage through fundoscopy, making molecular biomarkers urgently needed for early diagnosis of DR. EXPERIMENTAL DESIGN: Serum disease-specific haptoglobin-ß (Hp-ß) chains of 100 patients with type 2 diabetes mellitus (T2DM) and 156 T2DM patients with non-proliferative diabetic retinopathy (NPDR) were separated using polyacrylamide gel electrophoresis. After in-gel digestion and enrichment, the intact N-glycopeptides were detected by mass spectrometry. RESULTS: Fucosylation of Hp-ß was significantly increased and sialylation of Hp-ß was significantly decreased in background DR (BDR, an early-stage DR) patients compared with non-diabetic retinopathy patients (p < 0.05) and yielded area under curves (AUCs) of 0.801 and 0.829 in training and validation groups, respectively, which had an advantage over glycated hemoglobin A1c (AUC ≤ 0.691). Moreover, a significant increase in sialylated Hp-ß was found in severe NPDR patients compared with BDR patients and yielded an AUC of 0.828 to distinguish severe NPDR from BDR. CONCLUSION: Changes in Hp-ß glycosylation are closely related to DR, and may be used for early diagnosis and screening of DR.

14.
Exp Ther Med ; 27(5): 180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38515645

RESUMEN

The number of artificial total hip revision arthroplasties is increasing yearly in China, and >50% of these cases have acetabular defects. Accurately locating and quantifying the bone defect is one of the current challenges of this surgery. Thus, the objective of the present study was to simulate acetabular implantation with the aid of Mimics 17.0 software (Materialise NV) in patients with loosened acetabular prosthesis, to evaluate the 'ideal acetabular center' and the 'actual acetabular center' to guide the choice of prosthesis and surgical method. From January 2017 to June 2021, the present study included 10 hips from 10 patients [seven men (seven hips) and three women (three hips)]. In all patients, the Mimics software was applied to simulate the dislocation of the femoral prosthesis and acetabular prosthesis implantation before surgery; calculate the height difference between the 'ideal acetabular center' and the 'actual acetabular center' to assess the bone defect; confirm the size of the acetabular prosthesis, abduction angle, anteversion angle and bone coverage of the acetabular cup; and measure the intraoperative bleeding and postoperative follow-up Harris score of the hip joint. After statistical analysis, the present study revealed that digital simulation assistance could improve the accuracy of hip revision acetabular prosthesis implantation, reduce postoperative shortening of the affected limb, especially for surgeons with relatively little experience in hip revision surgery, and greatly reduce the occurrence of complications such as hip dislocation because of poor postoperative prosthesis position.

15.
Waste Manag ; 179: 120-129, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38471250

RESUMEN

Traditional cathode recycling methods have become outdated amid growing concerns for high-value output and environmental friendliness in spent Li-ion battery (LIB) recycling. Our study presents a closed-loop approach that involves selective sulfurization roasting, water leaching, and regeneration, efficiently transforming spent ternary Li batteries (i.e., NCM) into high-performance cathode materials. By combining experimental investigations with density functional theory (DFT) calculations, we elucidate the mechanisms within the NCM-C-S roasting system, providing a theoretical foundation for selective sulfidation. Utilizing in situ X-ray diffraction techniques and a series of consecutive experiments, the study meticulously tracks the evolution of regenerating cathode materials that use transition metal sulfides as their primary raw materials. The Li-rich regenerated NCM exhibits exceptional electrochemical performance, including long-term cycling, high-rate capabilities, reversibility, and stability. The closed-loop approach highlights the sustainability and environmental friendliness of this recycling process, with potential applications in other cathode materials, such as LiCoO2 and LiMn2O4. Compared with traditional methods, this short process approach avoids the complexity of leaching, solvent extraction, and reverse extraction, significantly increasing metal utilization and Li recovery rates while reducing pollution and resource waste.


Asunto(s)
Litio , Metales , Suministros de Energía Eléctrica , Electrodos , Reciclaje , Iones
16.
Chem Sci ; 15(7): 2323-2350, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38362439

RESUMEN

In the past few decades, great efforts have been made to develop advanced transition metal dichalcogenide (TMD) materials as metal-ion battery electrodes. However, due to existing conversion reactions, they still suffer from structural aggregation and restacking, unsatisfactory cycling reversibility, and limited ion storage dynamics during electrochemical cycling. To address these issues, extensive research has focused on molecular modulation strategies to optimize the physical and chemical properties of TMDs, including phase engineering, defect engineering, interlayer spacing expansion, heteroatom doping, alloy engineering, and bond modulation. A timely summary of these strategies can help deepen the understanding of their basic mechanisms and serve as a reference for future research. This review provides a comprehensive summary of recent advances in molecular modulation strategies for TMDs. A series of challenges and opportunities in the research field are also outlined. The basic mechanisms of different modulation strategies and their specific influences on the electrochemical performance of TMDs are highlighted.

17.
Biodivers Data J ; 12: e113979, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348181

RESUMEN

Asian warty newts, genus Paramesotriton, are endemic to southern China and northern Vietnam. Despite the achievements in biodiversity, molecular systematics and biogeography of species in this genus, population genetic diversity studies are lacking due to the lack of economical and available genetic markers. In this study, we developed 17 highly polymorphic microsatellite loci from RAD simplified genomic data for the Asian warty newts, genus Paramesotriton and successfully completed cross-species amplification tests on 20 samples of four species of Paramesotriton. These microsatellite markers can be used as important tools to study population genetic structure, levels of gene flow, population differentiation, mating systems and landscape genetics within the genus Paramesotriton and, thus, to make scientific conservation decisions and actions for the conservation of these rare and endangered amphibians.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38298177

RESUMEN

CONTEXT: Dysthyroid optic neuropathy (DON) is a serious vision-threatening complication of thyroid-associated ophthalmopathy (TAO). Exploration of the underlying mechanisms of DON is critical for its timely clinical diagnosis. OBJECTIVE: We hypothesized that TAO patients with DON may have altered brain functional networks. We aimed to explore the alterations of static and dynamic functional connectomes in patients with and without DON using resting-state functional MRI with graph theory method. DESIGN: A cross-sectional study. SETTING: Grade A tertiary hospital. PARTICIPANTS: Sixty-six TAO patients (28 DON and 38 non-DON) and 30 healthy controls (HCs). MAIN OUTCOME MEASURES: Topological properties of functional networks. RESULTS: For static properties, DON patients exhibited lower global efficiency (Eg), local efficiency, normalized clustering coefficient, small-worldness (σ), and higher characteristic path length (Lp) than HCs. Both DON and non-DON patients exhibited varying degrees of abnormalities in nodal properties. Meanwhile, compared with non-DON, DON patients exhibited abnormalities in nodal properties in orbitofrontal cortex and visual network (VN). For dynamic properties, DON group exhibited higher variance in Eg and Lp than non-DON and HC groups. A strengthened subnetwork with VN as the core was identified in DON cohort. Significant correlations were found between network properties and clinical variables. For distinguishing DON, the combination of static and dynamic network properties exhibited optimal diagnostic performance. CONCLUSION: Functional network alterations were observed in both DON and non-DON patients, providing novel insights into the underlying neural mechanisms of disease. Functional network properties may be potential biomarkers for reflecting the progression of TAO from non-DON to DON.

19.
Nanoscale ; 16(12): 5893-5902, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38389495

RESUMEN

Carbon has been widely used as an electrode material in commercial metal-ion batteries (MIBs) because of its desirable electrical, mechanical, and physical properties. Still, traditional carbon electrodes suffer from limited mechanical stability and electrochemical performance in MIBs. Drawing inspiration from biological species, the carbon allotropes, such as fullerenes, carbon nanotubes, and graphene, can be engineered into mechanically robust, highly conductive frameworks with enhanced ion storage and transport capabilities for MIBs. Here, we present an assortment of bio-inspired carbon electrodes that have enhanced the cycling stability, capacity retention, and overall performance of MIBs. In addition, mimicking the structure and functionality of biological systems has led to the development of flexible MIBs whose performance does not degrade even when stretched, bent, or twisted. Finite element analysis (FEA) is a useful guide in identifying such bio-inspired carbon frameworks because it can simulate and analyze potential failure scenarios, such as stress build-up or structural collapse in MIBs. This review highlights through several examples that there is much scope for improving carbon-based electrode materials through bio-inspired designs for practical high-performance MIBs.

20.
Int J Biol Macromol ; 262(Pt 2): 129978, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340916

RESUMEN

The plant endophytic bacteria are a great source of nature insecticides. However, no such endophytic bacteria have been found in sugarcane, to address this gap, we isolated and identified a strain of Serratia marcescens with moderate insecticidal activity from sugarcane. Taken armyworm Mythimna separata as example, the mortality rates of oral infection and injection infection were 47.06 % and 91 %, respectively. The SM has significant negative affect on the growth, development, and reproduction of M. separata. After determining that these insecticidal substances, 33 potential virulence proteins were screened through the identification and prediction of bacterial proteins. Later we confirmed serralysin was a vital toxic protein from SM that caused M. separata death by prokaryotic expression. In addition, we also found that the intestinal tissue cells infected with SM or serralysin were severely diseased, which may be a major factor in M. separata demise. Finally, through gene expression level, protein molecular docking, we found the aminopeptidase-N would be one of the potential receptors of serralysin. Taken together, our findings indicate that sugarcane endophyte S. marcescens may be beneficial for pest control in sugarcane and explain its insecticidal mechanism. This study provides new ideas and materials for the biological control of pests.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Platelmintos , Saccharum , Animales , Insecticidas/farmacología , Serratia marcescens , Spodoptera , Larva , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...