Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
FASEB J ; 38(15): e23852, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39101942

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is a degenerative ailment that causes slow cartilage degeneration, aberrant bone remodeling, and persistent discomfort, leading to a considerable reduction in the patient's life quality. Current treatment options for TMJOA have limited efficacy. This investigation aimed to explore a potential strategy for halting or reversing the progression of TMJOA through the utilization of exosomes (EXOs) derived from urine-derived stem cells (USCs). The USC-EXOs were obtained through microfiltration and ultrafiltration techniques, followed by their characterization using particle size analysis, electron microscopy, and immunoblotting. Subsequently, an in vivo model of TMJOA induced by mechanical force was established. To assess the changes in the cartilage of TMJOA treated with USC-EXOs, we performed histology analysis using hematoxylin-eosin staining, immunohistochemistry, and histological scoring. Our findings indicate that the utilization of USC-EXOs yields substantial reductions in TMJOA, while concurrently enhancing the structural integrity and smoothness of the compromised condylar cartilage surface. Additionally, USC-EXOs exhibit inhibitory effects on osteoclastogenic activity within the subchondral bone layer of the condylar cartilage, as well as attenuated apoptosis in the rat TMJ in response to mechanical injury. In conclusion, USC-EXOs hold considerable promise as a potential therapeutic intervention for TMJOA.


Asunto(s)
Exosomas , Osteoartritis , Articulación Temporomandibular , Exosomas/metabolismo , Animales , Osteoartritis/terapia , Osteoartritis/patología , Osteoartritis/metabolismo , Ratas , Masculino , Humanos , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Células Madre/citología , Células Madre/metabolismo , Ratas Sprague-Dawley , Orina/citología , Trastornos de la Articulación Temporomandibular/terapia , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Femenino , Cartílago Articular/patología , Cartílago Articular/metabolismo
2.
Nano Lett ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150779

RESUMEN

Mild photothermal therapy (PTT) shows the potential for chemosensitization by tumor-localized P-glycoprotein (P-gp) modulation. However, conventional mild PTT struggles with real-time uniform temperature control, obscuring the temperature-performance relationship and resulting in thermal damage. Besides, the time-performance relationship and the underlying mechanism of mild PTT-mediated P-gp reversal remains elusive. Herein, we developed a temperature self-limiting lipid nanosystem (RFE@PD) that integrated a reversible organic heat generator (metal-phenolic complexes) and metal chelator (deferiprone, DFP) encapsulated phase change material. Upon NIR irradiation, RFE@PD released DFP for blocking ligand-metal charge transfer to self-limit temperature below 45 °C, and rapidly reduced P-gp within 3 h via Ubiquitin-proteasome degradation. Consequently, the DOX·HCl-loaded thermo-chemotherapeutic lipid nanosystem (RFE@PD-DOX) led to dramatically improved drug accumulation and 5-fold chemosensitization in MCF-7/ADR tumor models by synchronizing P-gp reversal and drug pulse liberation, achieving a tumor inhibition ratio of 82.42%. This lipid nanosystem integrated with "intrinsic temperature-control" and "temperature-responsive pulse release" casts new light on MDR tumor therapy.

3.
MycoKeys ; 106: 117-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948914

RESUMEN

The rotting wood in freshwater is a unique eco-environment favoring various fungi. During our investigation of freshwater fungi on decaying wood, three hyphomycetes were collected from Jiangxi and Guangxi Provinces, China. Based on the morphological observations and phylogenetic analysis of a combined DNA data containing ITS, LSU, SSU and tef1-α sequences, two new Trichobotrys species, T.meilingensis and T.yunjushanensis, as well as a new record of T.effusa, were introduced. Additionally, a comprehensive description of the genus with both morphological and molecular data was first provided.

4.
RSC Adv ; 14(32): 23023-23036, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39040701

RESUMEN

Aqueous zinc ion batteries (AZIBs) have garnered considerable interest as an eco-friendly, safe, and cost-effective energy storage solution. Although significant strides have been made in recent years, there remain technical hurdles to overcome. Herein, this review summarizes in detail the primary challenges confronting aqueous zinc ion batteries, including the rampant dendrite growth, and water-induced parasitic reactions, and proposes host-engineering modification strategies focusing on optimizing the structure design of the zinc anode substrates, involving three-dimensional structure design, zincophilicity regulation, and epitaxial-oriented modification, and comprehensively analyzes the structure-activity relationship between different modification strategies and battery performance. In addition, we highlight the research trends and prospects in future anode modification for aqueous zinc-ion batteries. This work offers valuable insights into advanced Zn anode constructions for further applications in high-performance AZIBs.

5.
NPJ Precis Oncol ; 8(1): 157, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060449

RESUMEN

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal original tumor in gastrointestinal (GI) tract and is considered to have varying malignant potential. With the advancement of computer science, radiomics technology and deep learning had been applied in medical researches. It's vital to construct a more accurate and reliable multimodal predictive model for recurrence-free survival (RFS) aiding for clinical decision-making. A total of 254 patients underwent surgery and pathologically diagnosed with GIST in The First Hospital of China Medical University from 2019 to 2022 were included in the study. Preoperative contrast enhanced computerized tomography (CE-CT) and hematoxylin/eosin (H&E) stained whole slide images (WSI) were acquired for analysis. In the present study, we constructed a sum of 11 models while the multimodal model (average C-index of 0.917 on validation set in 10-fold cross validation) performed the best on external validation cohort with an average C-index of 0.864. The multimodal model also reached statistical significance when validated in the external validation cohort (n = 42) with a p-value of 0.0088 which pertained to the recurrence-free survival (RFS) comparison between the high and low groups using the optimal threshold on the predictive score. We also explored the biological significance of radiomics and pathomics features by visualization and quantitative analysis. In the present study, we constructed a multimodal model predicting RFS of GIST which was prior over unimodal models. We also proposed hypothesis on the correlation between morphology of tumor cell and prognosis.

6.
J Cell Mol Med ; 28(11): e18472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842129

RESUMEN

Excessive load on the temporomandibular joint (TMJ) is a significant factor in the development of TMJ osteoarthritis, contributing to cartilage degeneration. The specific mechanism through which excessive load induces TMJ osteoarthritis is not fully understood; however, mechanically-activated (MA) ion channels play a crucial role. Among these channels, Piezo1 has been identified as a mediator of chondrocyte catabolic responses and is markedly increased in osteoarthritis. Our observations indicate that, under excessive load conditions, endoplasmic reticulum stress in chondrocytes results in apoptosis of the TMJ chondrocytes. Importantly, using the Piezo1 inhibitor GsMTx4 demonstrates its potential to alleviate this condition. Furthermore, Piezo1 mediates endoplasmic reticulum stress in chondrocytes by inducing calcium ion influx. Our research substantiates the role of Piezo1 as a pivotal ion channel in mediating chondrocyte overload. It elucidates the link between excessive load, cell apoptosis, and calcium ion influx through Piezo1. The findings underscore Piezo1 as a key player in the pathogenesis of TMJ osteoarthritis, shedding light on potential therapeutic interventions for this condition.


Asunto(s)
Apoptosis , Calcio , Condrocitos , Estrés del Retículo Endoplásmico , Canales Iónicos , Osteoartritis , Articulación Temporomandibular , Condrocitos/metabolismo , Condrocitos/patología , Canales Iónicos/metabolismo , Canales Iónicos/genética , Animales , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Calcio/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Humanos , Ratones , Transducción de Señal , Venenos de Araña , Péptidos y Proteínas de Señalización Intercelular
7.
Front Endocrinol (Lausanne) ; 15: 1366219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887267

RESUMEN

Objective: The aim of this study was to develop a nomogram, using serum thymidine kinase 1 protein (STK1p) combined with ultrasonography parameters, to early predict central lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC) pre-surgery. Methods: Patients with PTC pre-surgery in January 2021 to February 2023 were divided into three cohorts: the observation cohort (CLNM, n = 140), the control cohort (NCLNM, n = 128), and the external verification cohort (CLNM, n = 50; NCLNM, n = 50). STK1p was detected by an enzyme immunodot-blot chemiluminescence analyzer and clinical parameters were evaluated by ultrasonography. Results: A suitable risk threshold value for STK1p of 1.7 pmol/L was selected for predicting CLNM risk by receiver operating characteristic (ROC) curve analysis. Multivariate analysis identified the following six independent risk factors for CLNM: maximum tumor size >1 cm [odds ratio (OR) = 2.406, 95% confidence interval (CI) (1.279-4.526), p = 0.006]; capsule invasion [OR = 2.664, 95% CI (1.324-5.360), p = 0.006]; irregular margin [OR = 2.922; 95% CI (1.397-6.111), p = 0.004]; CLN flow signal [OR = 3.618, 95% CI (1.631-8.027), p = 0.002]; tumor-foci number ≥2 [OR = 4.064, 95% CI (2.102-7.859), p < 0.001]; and STK1p ≥1.7 pmol/L [OR = 7.514, 95% CI (3.852-14.660), p < 0.001]. The constructed nomogram showed that the area under the ROC curve for the main dataset was 0.867 and that for the validation dataset was 0.830, exhibiting effectivity, and was recalculated to a total score of approximately 383. Through monitoring the response post-surgery, all patients were assessed as tumor-free at 12 months post-surgery, which was significantly associated with a reduction in STK1p to disease-free levels. Conclusion: We demonstrate for the first time that a novel nomogram including STK1p combined with ultrasonography can assist in the clinical prevention of CLNM, by facilitating timely, individualized prophylactic CLNM dissection, thereby reducing the risk of secondary surgery and the probability of recurrence.


Asunto(s)
Metástasis Linfática , Nomogramas , Timidina Quinasa , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Ultrasonografía , Humanos , Masculino , Femenino , Timidina Quinasa/sangre , Persona de Mediana Edad , Adulto , Cáncer Papilar Tiroideo/sangre , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/diagnóstico por imagen , Neoplasias de la Tiroides/sangre , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/diagnóstico por imagen , Ultrasonografía/métodos , Biomarcadores de Tumor/sangre , Factores de Riesgo , Curva ROC , Pronóstico , Anciano , Adulto Joven , Ganglios Linfáticos/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/cirugía
8.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891544

RESUMEN

Plant-derived PA10T is regarded as one of the most promising semi-aromatic polyamides; however, shortcomings, including low dimensional accuracy, high moisture absorption, and relatively high dielectric constant and loss, have impeded its extensive utilization. Polymer blending is a versatile and cost-effective method to fabricate new polymeric materials with excellent comprehensive performance. In this study, various ratios of PA10T/PPO blends were fabricated via melt blending with the addition of a SEBS-g-MAH compatibilizer. Molau test and scanning electron microscopy (SEM) were employed to study the influence of SEBS-g-MAH on the compatibility of PA10T and PPO. These studies indicated that SEBS-g-MAH effectively refines the domain size of the dispersed PPO phase and improves the dispersion stability of PPO particles within a hexafluoroisopropanol solvent. This result was attributed to the in situ formation of the SEBS-g-PA10T copolymer, which serves as a compatibilizer. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results showed that the melting-crystallization behavior and thermal stability of blends closely resembled that of pure PA10T. Dynamic mechanical analysis (DMA) revealed that as the PPO content increased, there was a decrease in the glass transition temperature and storage modulus of PA10T. The water absorption rate, injection molding shrinkage, dielectric properties, and mechanical strength of blends were also systematically investigated. As the PPO content increased from 10% to 40%, the dielectric loss at 2.5 GHz decreased significantly from 0.00866 to 0.00572, while the notched Izod impact strength increased from 7.9 kJ/m2 to 13.7 kJ/m2.

9.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892264

RESUMEN

Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.


Asunto(s)
Anticonvulsivantes , Descubrimiento de Drogas , Epilepsia , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Animales , Descubrimiento de Drogas/métodos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Desarrollo de Medicamentos
10.
Adv Sci (Weinh) ; : e2309314, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923275

RESUMEN

Hypervascularized glioblastoma is naturally sensitive to anti-angiogenesis but suffers from low efficacy of transient vasculature normalization. In this study, a lipid-polymer nanoparticle is synthesized to execute compartmentalized Cas9 and sgRNA delivery for a permanent vasculature editing strategy by knocking out the signal transducer and activator of transcription 3 (STAT3). The phenylboronic acid branched cationic polymer is designed to condense sgRNA electrostatically (inner compartment) and patch Cas9 coordinatively (outer compartment), followed by liposomal hybridization with angiopep-2 decoration for blood-brain barrier (BBB) penetration. The lipid-polymer nanoparticles can reach glioblastoma within 2 h post intravenous administration, and hypoxia in tumor cells triggers charge-elimination and degradation of the cationic polymer for burst release of Cas9 and sgRNA, accompanied by instant Cas9 RNP assembly, yielding ≈50% STAT3 knockout. The downregulation of downstream vascular endothelial growth factor (VEGF) reprograms vasculature normalization to improve immune infiltration, collaborating with interleukin-6 (IL-6) and interleukin-10 (IL-10) reduction to develop anti-glioblastoma responses. Collectively, the combinational assembly for compartmentalized Cas9/sgRNA delivery provides a potential solution in glioblastoma therapy.

11.
Langmuir ; 40(26): 13515-13526, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38887887

RESUMEN

Carbon nanotubes (CNTs) can be regarded as a potential platform for transmembrane drug delivery as many experimental works have demonstrated their capability to effectively transport bioactive molecules into living cells. Within this framework, the loading of a peptide drug onto either the interior or exterior of CNTs has gained considerable interest. This study aims to conduct a comprehensive comparison of these two loading methods. To this end, we performed molecular dynamics simulations and the umbrella sampling technique to investigate the interaction energy, conformational changes, and free energy changes of a model peptide drug containing α-helical structure interacting with the inner or outer walls of a 14.7-nm-long (20,20) CNT. Our finding reveals that, for a tube of such dimensions, it is thermodynamically more favorable for the peptide to be loaded onto the inner tube wall than the outer tube wall, primarily due to a larger free energy change for the former strategy. Conversely, unloading the drug from the tube interior poses greater challenges. Moreover, the tube's curvature plays an essential role in influencing the conformation of the adsorbed peptide. Despite the relatively weaker van der Waals interaction between the CNT exterior and the peptide, loading the peptide onto the exterior may induce significant conformational changes, particularly affecting the peptide's α-helix structure. In contrast, loading of the peptide on the CNT interior could maintain most of the α-helical content. CNTs do not typically attract specific peptide residues, with adsorbed groups primarily determined by the peptide's configurations and orientations. Finally, we offer a guideline for selecting an optimal loading strategy for CNT-based drug delivery.


Asunto(s)
Simulación de Dinámica Molecular , Nanotubos de Carbono , Péptidos , Nanotubos de Carbono/química , Péptidos/química , Termodinámica , Portadores de Fármacos/química
12.
J Control Release ; 371: 588-602, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866245

RESUMEN

Immunosuppressive microenvironment and poor immunogenicity are two stumbling blocks in anti-tumor immune activation. Tumor associated macrophages (TAMs) play crucial roles in immunosuppressive microenvironment, while immunogenic cell death (ICD) is a typical strategy to boost immunogenicity. Herein, we developed a coordinative modular assembly-based self-reinforced nanoparticle, (CaO2/TA)-(Fe3+/BSA) which integrated CaO2, Fe3+-tannic acid coordinated networks and albumin under the instruction of molecular dynamics simulation. (CaO2/TA)-(Fe3+/BSA) could significantly enhance Fenton reaction through Fe3+ self-reduction and H2O2 self-sufficiency, and simultaneously increased intracellular accumulation of Ca2+. The self-augmented Fenton reaction with sufficient reactive oxygen species effectively repolarized TAMs and elicited ICD with Ca2+ overload. Besides, (CaO2/TA)-(Fe3+/BSA) was confirmed to self-reinforce deep tumor drug delivery by "treatment-delivery" positive feedback based on gp60-mediated transcytosis and M2-like macrophages repolarization-mediated perfusion promotion. Resultantly, (CaO2/TA)-(Fe3+/BSA) effectively alleviated immunosuppression, provoked local and systemic immune response and potentiated anti-PD-1 antibody therapy. Our strategy highlights a facile and controllable approach to construct penetrated effective antitumor nano-immunotherapeutic agent.


Asunto(s)
Antineoplásicos , Nanopartículas , Microambiente Tumoral , Animales , Nanopartículas/química , Ratones , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Óxidos/química , Óxidos/administración & dosificación , Compuestos de Calcio/química , Femenino , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Ratones Endogámicos BALB C , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/administración & dosificación , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Humanos , Calcio/metabolismo , Muerte Celular Inmunogénica/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Inmunoterapia/métodos
13.
Cancer Cell Int ; 24(1): 163, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725047

RESUMEN

It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.

14.
ACS Omega ; 9(18): 20410-20424, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737081

RESUMEN

The droplet-to-iron electrochemical reaction is common in nature and industrial production, and it causes damage to the economy, safety, and the environment. The electrochemical reaction of droplet-to-iron is a coupling process of wetting and corrosion. Presently, investigations into electrochemical reactions mainly focus on the corrosions caused by a solution, and wetting is rarely considered. However, for the droplet-to-iron electrochemical reaction, the mechanism of charge transfer in the process is still unclear. In this paper, a reactive molecular dynamics simulation model for the droplet-to-iron electrochemical reaction is developed for the first time. The electrochemical reaction of droplet-to-iron is studied, and the interaction between droplet wetting and corrosion on iron is investigated. The effects of temperature, electric field strength, and salt concentration on the electrochemical reaction are explored. Results show that droplet wetting on the iron surface and the formation of a single-molecular-layer ordered structure are prerequisites for corrosion. The hydroxyl radicals that penetrate the ordered structure acquire electrons from iron atoms on the substrate surface under the action of Coulomb forces and form iron-containing oxides with these iron atoms. The corrosion products and craters lead to a reduced droplet height, which promotes droplet wetting on iron and further intensifies the droplet-to-iron electrochemical reaction.

17.
Front Cell Infect Microbiol ; 14: 1230650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638824

RESUMEN

Objective: To evaluate the diagnostic value of metagenomic sequencing technology based on Illumina and Nanopore sequencing platforms for patients with suspected lower respiratory tract infection whose pathogen could not be identified by conventional microbiological tests. Methods: Patients admitted to the Respiratory and Critical Care Medicine in Shanghai Ruijin Hospital were retrospectively studied from August 2021 to March 2022. Alveolar lavage or sputum was retained in patients with clinically suspected lower respiratory tract infection who were negative in conventional tests. Bronchoalveolar lavage fluid (BALF) samples were obtained using bronchoscopy. Sputum samples were collected, while BALF samples were not available due to bronchoscopy contraindications. Samples collected from enrolled patients were simultaneously sent for metagenomic sequencing on both platforms. Results: Thirty-eight patients with suspected LRTI were enrolled in this study, consisting of 36 parts of alveolar lavage and 2 parts of sputum. According to the infection diagnosis, 31 patients were confirmed to be infected with pathogens, while 7 patients were diagnosed with non-infectious disease. With regard to the diagnosis of infectious diseases, the sensitivity and specificity of Illumina and Nanopore to diagnose infection in patients were 80.6% vs. 93.5% and 42.9 vs. 28.6%, respectively. In patients diagnosed with bacterial, Mycobacterium, and fungal infections, the positive rates of Illumina and Nanopore sequencer were 71.4% vs. 78.6%, 36.4% vs. 90.9%, and 50% vs. 62.5%, respectively. In terms of pathogen diagnosis, the sensitivity and specificity of pathogens detected by Illumina and Nanopore were 55.6% vs. 77.8% and 42.9% vs. 28.6%, respectively. Among the patients treated with antibiotics in the last 2 weeks, 61.1% (11/18) and 77.8% (14/18) cases of pathogens were accurately detected by Illumina and Nanopore, respectively, among which 8 cases were detected jointly. The consistency between Illumina and diagnosis was 63.9% (23/36), while the consistency between Nanopore and diagnosis was 83.3% (30/36). Between Illumina and Nanopore sequencing methods, the consistency ratio was 55% (22/42) based on pathogen diagnosis. Conclusion: Both platforms play a certain value in infection diagnosis and pathogen diagnosis of CMT-negative suspected LRTI patients, providing a theoretical basis for clinical accurate diagnosis and symptomatic treatment. The Nanopore platform demonstrated potential advantages in the identification of Mycobacterium and could further provide another powerful approach for patients with suspected Mycobacterium infection.


Asunto(s)
Secuenciación de Nanoporos , Infecciones del Sistema Respiratorio , Humanos , Estudios Retrospectivos , China , Infecciones del Sistema Respiratorio/diagnóstico , Antibacterianos , Líquido del Lavado Bronquioalveolar , Metagenómica , Secuenciación de Nucleótidos de Alto Rendimiento , Sensibilidad y Especificidad
18.
Cancer Cell Int ; 24(1): 146, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654238

RESUMEN

BACKGROUND: Colon cancer ranks third among global tumours and second in cancer-related mortality, prompting an urgent need to explore new therapeutic targets. C6orf15 is a novel gene that has been reported only in Sjogren's syndrome and systemic lupus erythematosus patients. We found a close correlation between increased C6orf15 expression and the occurrence of colon cancer. The aim of this study was to explore the potential of C6orf15 as a therapeutic target for colorectal cancer. METHOD: RNA-seq differential expression analysis of the TCGA database was performed using the R package 'limma.' The correlation between target genes and survival as well as tumour analysis was analysed using GEPIA. Western blot and PCR were used to assess C6orf15 expression in colorectal cancer tissue samples. Immunofluorescence and immunohistochemistry were used to assess C6orf15 subcellular localization and tissue expression. The role of C6orf15 in liver metastasis progression was investigated via a mouse spleen infection liver metastasis model. The association of C6orf15 with signalling pathways was assessed using the GSEA-Hallmark database. Immunohistochemistry (IHC), qPCR and western blotting were performed to assess the expression of related mRNAs or proteins. Biological characteristics were evaluated through cell migration assays, MTT assays, and Seahorse XF96 analysis to monitor fatty acid metabolism. RESULTS: C6orf15 was significantly associated with liver metastasis and survival in CRC patients as determined by the bioinformatic analysis and further verified by immunohistochemistry (IHC), qPCR and western blot results. The upregulation of C6orf15 expression in CRC cells can promote the nuclear translocation of ß-catenin and cause an increase in downstream transcription. This leads to changes in the epithelial-mesenchymal transition (EMT) and alterations in fatty acid metabolism, which together promote liver metastasis of CRC. CONCLUSION: Our study identified C6orf15 as a marker of liver metastasis in CRC. C6orf15 can activate the WNT/ß-catenin signalling pathway to promote EMT and fatty acid metabolism in CRC.

19.
Int J Pharm X ; 7: 100238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511068

RESUMEN

The clinical advancement of protein-based nanomedicine has revolutionized medical professionals' perspectives on cancer therapy. Protein-based nanoparticles have been exploited as attractive vehicles for cancer nanomedicine due to their unique properties derived from naturally biomacromolecules with superior biocompatibility and pharmaceutical features. Furthermore, the successful translation of Abraxane™ (paclitaxel-based albumin nanoparticles) into clinical application opened a new avenue for protein-based cancer nanomedicine. In this mini-review article, we demonstrate the rational design and recent progress of protein-based nanoparticles along with their applications in cancer diagnosis and therapy from recent literature. The current challenges and hurdles that hinder clinical application of protein-based nanoparticles are highlighted. Finally, future perspectives for translating protein-based nanoparticles into clinic are identified.

20.
Cancer Cell Int ; 24(1): 90, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429738

RESUMEN

BACKGROUND: Patients with colorectal cancer (CRC) with liver metastasis or drug resistance have a poor prognosis. Previous research has demonstrated that PPP2R1B inactivation results in the development of CRC. However, the role of PPP2R1B in CRC metastasis and drug resistance is unclear. METHODS: Venny 2.1 was used to determine the intersection between survival-related differentially expressed genes (DEGs) and liver metastasis-related DEGs according to RNA-seq data from The Cancer Genome Atlas (TCGA) and the GEO database (GSE179979). LC‒MS/MS and coimmunoprecipitation were performed to predict and verify the substrate protein of PPP2R1B. Gene Set Variation Analysis (GSVA) was subsequently utilized to assess pathway enrichment levels. The predictive performance of PPP2R1B was assessed by regression analysis, Kaplan-Meier (KM) survival analysis and drug sensitivity analysis. Immunohistochemistry (IHC), qRT-PCR and western blotting were performed to measure the expression levels of related mRNAs or proteins. Biological features were evaluated by wound healing, cell migration and invasion assays and CCK-8 assays. A mouse spleen infection liver metastasis model was generated to confirm the role of PPP2R1B in the progression of liver metastasis in vivo. RESULTS: According to bioinformatics analysis, PPP2R1B is significantly associated with liver metastasis and survival in CRC patients, and these findings were further verified via immunohistochemistry (IHC), qPCR and Western blotting. Pathway enrichment and LC‒MS/MS analysis revealed that PPP2R1B is negatively associated with the MAPK/ERK signalling pathway. Additionally, PD98059, a MAPK/ERK pathway inhibitor, inhibited EMT in vitro by reversing the changes in key proteins involved in EMT signalling (ZEB1, E-cadherin and Snail) and ERK/MAPK signalling (p-ERK) mediated by PPP2R1B. Oxaliplatin sensitivity prediction and validation revealed that PPP2R1B silencing decreased Oxaliplatin chemosensitivity, and these effects were reversed by PD98059 treatment. Moreover, PPP2R1B was coimmunoprecipitated with p-ERK in vitro. A negative correlation between PPP2R1B and p-ERK expression was also observed in clinical CRC samples, and the low PPP2R1B/high p-ERK coexpression pattern indicated a poor prognosis in CRC patients. In vivo, PPP2R1B silencing significantly promoted liver metastasis. CONCLUSIONS: This study revealed that PPP2R1B induces dephosphorylation of the p-ERK protein, inhibits liver metastasis and increases Oxaliplatin sensitivity in CRC patients and could be a potential candidate for therapeutic application in CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA