Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
2.
Biol Methods Protoc ; 9(1): bpae011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486874

RESUMEN

The establishment of high sensitive detection method for various pathogenic microorganisms remains constantly concerned. In the present study, multi-probe strategy was first systematically investigated followed by establishing a highly sensitive TaqMan real-time fluorescent quantitative PCR (qPCR) method for detecting African swine fever virus (ASFV). Briefly, four probes based on the B646L gene of ASFV were designed and the effects of different combinations of the probes in a single TaqMan qPCR assay on the detection sensitivity were investigated. As less as 0.5-5 copies/µl of the ASFV gene was detected by the established TaqMan qPCR assay. Furthermore, plasmid harboring the B646L in water samples could be concentrated 1000 times by ultrafiltration to enable a highly sensitive detection of trace viral nucleic acids. Moreover, no cross-reactivity was observed with other common clinical swine viruses such as PCV2, PCV3, PCV4, PEDV, PDCoV, CSFV, PRRSV, and PRV. When detecting 173 clinical porcine serum samples, the coincidence rate between the developed method and WOAH (World Organization of Animal Health) recommended method was 100%. This study might provide an integrated strategy to achieve higher detection sensitivity of trace pathogenic microorganisms and applicably sensitive TaqMan-based qPCR assays.

3.
ACS Omega ; 9(7): 7937-7957, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405476

RESUMEN

In the context of global climate change, significant attention is being directed toward renewable energy and the pivotal role of carbon capture and storage (CCS) technologies. These innovations involve secure CO2 storage in deep saline aquifers through structural and capillary processes, with the interfacial tension (IFT) of the CO2-brine system influencing the storage capacity of formations. In this study, an extensive data set of 2811 experimental data points was compiled to model the IFT of impure and pure CO2-brine systems. Three white-box machine learning (ML) methods, namely, genetic programming (GP), gene expression programming (GEP), and group method of data handling (GMDH) were employed to establish accurate mathematical correlations. Notably, the study utilized two distinct modeling approaches: one focused on impurity compositions and the other incorporating a pseudocritical temperature variable (Tcm) offering a versatile predictive tool suitable for various gas mixtures. Among the correlation methods explored, GMDH, employing five inputs, exhibited exceptional accuracy and reliability across all metrics. Its mean absolute percentage error (MAPE) values for testing, training, and complete data sets stood at 7.63, 7.31, and 7.38%, respectively. In the case of six-input models, the GEP correlation displayed the highest precision, with MAPE values of 9.30, 8.06, and 8.31% for the testing, training, and total data sets, respectively. The sensitivity and trend analyses revealed that pressure exerted the most significant impact on the IFT of CO2-brine, showcasing an adverse effect. Moreover, an impurity possessing a critical temperature below that of CO2 resulted in an elevated IFT. Consequently, this relationship leads to higher impurity concentrations aligning with lower Tcm values and subsequently elevated IFT. Also, monovalent and divalent cation molalities exhibited a growing influence on the IFT, with divalent cations exerting approximately double the influence of monovalent cations. Finally, the Leverage approach confirmed both the reliability of the experimental data and the robust statistical validity of the best correlations established in this study.

4.
Clin Lab ; 69(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084697

RESUMEN

BACKGROUND: Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is a rare hyper-inflammatory syndrome caused by mutations in STXBP2. Most cases present at 2 - 6 months of age, and FHL-5 is extremely rare in neonates. METHODS: Appropriate laboratory tests, abdominal ultrasonography and whole exome sequencing were carried out. Respiratory support, antibiotics, and transfusion of blood products were done. RESULTS: Laboratory tests revealed metabolic acidosis, thrombocytopenia, mild anemia, and low fibrinogen level. Blood culture, metagenomics, and TORCH screening were negative. Liver and spleen enlargements were confirmed by abdominal ultrasonography. Whole exome sequencing identified a homozygous mutation in STXBP2 c. 1432del G (p. V478Sfs*5). The heterozygous STXBP2 mutation was identified in the paternal grandfather, maternal grandfather, and parents. CONCLUSIONS: Here we report a case with a novel homozygous deletion in exon 16 of STXBP2, which caused the earliest reported case of FHL-5 in a neonate. Our results identify a new pathogenic variant for the early identification and clinical consultation of FHL-5.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Recién Nacido , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Homocigoto , Eliminación de Secuencia , Mutación , Proteínas Munc18/genética
5.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4824-4836, 2023 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-38147984

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic virus that can cause acute intestinal infectious diseases in both piglets and fattening pigs. The virus encodes at least 16 non-structural proteins, including nsp9, which has been shown to bind to single-stranded RNA. However, its function and mechanism remain unclear. In this study, we aimed to identify potential host proteins that interact with PEDV nsp9 using immunoprecipitation combined with mass spectrometry. The interactions were then confirmed by co-immunoprecipitation (Co-IP) and confocal laser scanning fluorescence techniques. The results showed that nsp9 interacts with HSPA8, Tollip, HSPA9 and TOMM70. Among them, overexpression of HSPA8 resulted in caused first upregulated and then down-regulated expression of nsp9, and promoted the proliferation of PEDV. Overexpression of Tollip significantly upregulated the expression of nsp9 and inhibited the proliferation of PEDV. Overexpression of TOMM70 significantly reduced the expression of nsp9, but did not show significant effect on the proliferation of PEDV. Overexpression of HSPA9 did not show significant effect on the expression of nsp9 and the proliferation of PEDV. These findings may facilitate further investigating the role of nsp9-interacting proteins in PEDV infection.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Replicación Viral , Proteínas
6.
J Virol ; 97(11): e0112523, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902398

RESUMEN

IMPORTANCE: The Avibirnavirus infectious bursal disease virus is still an important agent which largely threatens global poultry farming industry economics. VP3 is a multifunctional scaffold structural protein that is involved in virus morphogenesis and the regulation of diverse cellular signaling pathways. However, little is known about the roles of VP3 phosphorylation during the IBDV life cycle. In this study, we determined that IBDV infection induced the upregulation of Cdc7 expression and phosphorylated the VP3 Ser13 site to promote viral replication. Moreover, we confirmed that the negative charge addition of phosphoserine on VP3 at the S13 site was essential for IBDV proliferation. This study provides novel insight into the molecular mechanisms of VP3 phosphorylation-mediated regulation of IBDV replication.


Asunto(s)
Avibirnavirus , Proteínas de Ciclo Celular , Pollos , Virus de la Enfermedad Infecciosa de la Bolsa , Proteínas Serina-Treonina Quinasas , Proteínas Estructurales Virales , Replicación Viral , Animales , Avibirnavirus/química , Avibirnavirus/crecimiento & desarrollo , Avibirnavirus/metabolismo , Infecciones por Birnaviridae/enzimología , Infecciones por Birnaviridae/metabolismo , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/virología , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pollos/virología , Virus de la Enfermedad Infecciosa de la Bolsa/química , Virus de la Enfermedad Infecciosa de la Bolsa/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/metabolismo
7.
Plants (Basel) ; 12(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836094

RESUMEN

The ratoon rice cropping system (RR) is developing rapidly in China due to its comparable annual yield and lower agricultural and labor inputs than the double rice cropping system (DR). Here, to further compare the greenhouse effects of RR and DR, a two-year field experiment was carried out in Hubei Province, central China. The ratoon season showed significantly lower cumulative CH4 emissions than the main season of RR, the early season and late season of DR. RR led to significantly lower annual cumulative CH4 emissions, but no significant difference in cumulative annual N2O emissions compared with DR. In RR, the main and ratoon seasons had significantly higher and lower grain yields than the early and late seasons of DR, respectively, resulting in comparable annual grain yields between the two systems. In addition, the ratoon season had significantly lower global warming potential (GWP) and greenhouse gas intensity-based grain yield (GHGI) than the main and late seasons. The annual GWP and GHGI of RR were significantly lower than those of DR. In general, the differences in annual CH4 emissions, GWP, and GHGI could be primarily attributed to the differences between the ratoon season and the late season. Moreover, GWP and GHGI exhibited significant positive correlations with cumulative emissions of CH4 rather than N2O. The leaf area index (LAI) and biomass accumulation in the ratoon season were significantly lower than those in the main season and late season, and CH4 emissions, GWP, and GHGI showed significant positive correlations with LAI, biomass accumulation and grain yield in the ratoon and late season. Finally, RR had significantly higher net ecosystem economic benefits (NEEB) than DR. Overall, this study indicates that RR is a green cropping system with lower annual CH4 emissions, GWP, and GHGI as well as higher NEEB.

8.
Virulence ; 14(1): 2232707, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37442088

RESUMEN

Viruses have developed different strategies to hijack mitophagy to facilitate their replication. However, whether and how African swine fever virus (ASFV) regulates mitophagy are largely unknown. Here, we found that the ASFV-encoded p17 induced mitophagy. Coimmunoprecipitation/mass spectrometry assays identified translocase of outer mitochondrial membrane 70 (TOMM70) as the protein that interacted with p17. The binding of TOMM70 to p17 promoted the binding of the mitophagy receptor SQSTM1 to TOMM70, led to engulfment of mitochondria by autophagosomes, and consequently decreased the number of mitochondria. Consistently, the levels of TOMM70 and TOMM20 decreased substantially after p17 expression or ASFV infection. Furthermore, p17-mediated mitophagy resulted in the degradation of mitochondrial antiviral signalling proteins and inhibited the production of IFN-α, IL-6 and TNFα. Overall, our findings suggest that ASFV p17 regulates innate immunity by inducing mitophagy via the interaction of SQSTM1 with TOMM70.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Mitofagia , Mitocondrias/metabolismo , Fiebre Porcina Africana/metabolismo
9.
PLoS Pathog ; 19(6): e1011472, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37343022

RESUMEN

Tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin ligase, plays a critical role in the host antiviral response. However, the mechanism and antiviral spectrum of TRIM21 in influenza A virus (IAV) remain unclear. Here, we report that TRIM21 inhibits the replication of various IAV subtypes by targeting matrix protein 1 (M1) from H3/H5/H9, but not H1 and H7 M1. Mechanistically, TRIM21 binds to the residue R95 of M1 and facilitates K48 ubiquitination of M1 K242 for proteasome-dependent degradation, leading to the inhibition of H3, H5, and H9 IAV replication. Interestingly, the recombinant viruses with M1 R95K or K242R mutations were resistance to TRIM21 and exhibited more robust replication and severe pathogenicity. Moreover, the amino acid sequence M1 proteins, mainly from avian influenza such as H5N1, H7N9, H9N2, ranging from 1918 to 2022, reveals a gradual dominant accumulation of the TRIM21-driven R95K mutation when the virus jumps into mammals. Thus, TRIM21 in mammals' functions as a host restriction factor and drives a host adaptive mutation of influenza A virus.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Gripe Humana/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Ubiquitinación , Replicación Viral , Mamíferos
10.
Viruses ; 15(5)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37243301

RESUMEN

Infectious bronchitis virus (IBV) belongs to the gamma-coronavirus genus of Coronaviridae and causes serious infectious diseases in the poultry industry. However, only a few IBV strains can infect avian passage cell lines, seriously hindering the progress of basic research on IBV pathogenesis. Whereas IBV field strains can replicate in tracheal ring organ culture (TOC) without any previous adaptation in chicken embryos or primary cells. In this study, to investigate the potential use of TOC as an in vitro infection model for the study of IBV-host interaction, we first established a chicken embryo TOC culture system and carried out an investigation on the IBV replication kinetics in the system. We found that the selected strains of the IBV GI-1, GI-7, GI-13, GI-19, and GI-22 genotypes could successfully replicate in TOC and bring about damage to the infected trachea. Next, we identified host proteins of the chicken embryo trachea that interact with the IBV S1 protein by immunoprecipitation and protein mass spectrometry. A total of 127 candidate proteins were initially identified with major involvement in cell adhesion pathways and apoptosis- and autophagy-related pathways. The heat shock protein 70 (HSP70) was selected for further investigation in the interaction with IBV viral proteins. Our results showed that HSP70 interacted with IBV S1 in both TOC and CEK cells, whereas HSP70 overexpression inhibited viral replication. This study indicates that TOC is a good system for the elucidation of IBV-host interactions and HSP70 is a potential host antiviral factor.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Animales , Embrión de Pollo , Virus de la Bronquitis Infecciosa/genética , Técnicas de Cultivo de Órganos , Tráquea , Pollos , Línea Celular , Infecciones por Coronavirus/veterinaria
11.
Antiviral Res ; 215: 105641, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230297

RESUMEN

RIG-I-like receptors (RLRs), retinoic acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), are pattern recognition receptors through which cells initially sense pathogenic RNA and trigger interferon (IFN) signaling. Herein, we report that interferon induced protein 35 (IFI35) activates the ring finger protein 125 (RNF125)-UbcH5c-dependent degradation of RLRs and represses the recognition by RIG-I and MDA5 of viral RNA to inhibit innate immunity. Furthermore, IFI35 binds selectively to different subtypes of influenza A virus (IAV) nonstructural protein 1 (NS1) with asparagine residue207 (N207). Functionally, the NS1(N207)-IFI35 interaction restores the activity of RLRs, and IAV with NS1(non-N207) showed high pathogenicity in mice. Big data analysis showed that the 21st century pandemic IAV are almost all characterized by NS1 protein with non-N207. Collectively, our data uncovered the mechanism of IFI35 restricting the activation of RLRs and provides a new drug target comprising the NS1 protein of different IAV subtypes.


Asunto(s)
Virus de la Influenza A , Interferones , Animales , Ratones , Interferones/metabolismo , Proteínas no Estructurales Virales/metabolismo , Inmunidad Innata , Mutación , Antivirales/farmacología , Antivirales/metabolismo , Ubiquitina-Proteína Ligasas/genética
12.
Microbiol Spectr ; 11(3): e0420622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036350

RESUMEN

Long noncoding RNAs (lncRNAs) are a class of noncoding RNAs that are involved in multiple biological processes. Here, we report a mechanism through which the lnc-AROD-miR-324-5p-CUEDC2 axis regulates the host innate immune response, using influenza A virus (IAV) as a model. We identified that host lnc-AROD without protein-coding capability is composed of 975 nucleotides. Moreover, lnc-AROD inhibited interferon-ß expression, as well as interferon-stimulated genes ISG15 and MxA. Furthermore, in vivo assays confirmed that lnc-AROD overexpression increased flu virus pathogenicity and mortality in mice. Mechanistically, lnc-AROD interacted with miR-324-5p, leading to decreased binding of miR-324-5p to CUEDC2. Collectively, our findings demonstrated that lnc-AROD is a critical regulator of the host antiviral response via the miR-324-5p-CUEDC2 axis, and lnc-AROD functions as competing endogenous RNA. Our results also provided evidence that lnc-AROD serves as an inhibitor of the antiviral immune response and may represent a potential drug target. IMPORTANCE lnc-AROD is a potential diagnostic and discriminative biomarker for different cancers. However, so far the mechanisms of lnc-AROD regulating virus replication are not well understood. In this study, we identified that lnc-AROD is downregulated during RNA virus infection. We demonstrated that lnc-AROD enhanced CUEDC2 expression, which in turn inhibited innate immunity and favored IAV replication. Our studies indicated that lnc-AROD functions as a competing endogenous RNA that binds miR-324-5p and reduces its inhibitory effect on CUEDC2. Taken together, our findings reveal that lnc-AROD plays an important role during the host antiviral immune response.


Asunto(s)
Virus de la Influenza A , MicroARNs , ARN Largo no Codificante , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Antivirales , Inmunidad Innata , Interferón beta , Virus de la Influenza A/genética
13.
J Virol ; 96(23): e0152222, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36409110

RESUMEN

Nuclear entrance and stability of porcine circovirus type 2 (PCV2), the smallest virus in mammals, are crucial for its infection and replication. However, the mechanisms are not fully understood. Here, we found that the PCV2 virion maintains self-stability via the host importin 5 (IPO5) during infection. Coimmunoprecipitation combined with mass spectrometry and glutathione S-transferase pulldown assays showed that the capsid protein (Cap) of PCV2 binds directly to IPO5. Fine identification demonstrated that the N-terminal residue arginine24 of Cap is the most critical to efficient binding to the proline709 residue of IPO5. Detection of replication ability further showed that IPO5 supports PCV2 replication by promoting the nuclear import of incoming PCV2 virions. Knockdown of IPO5 delayed the nuclear transport of incoming PCV2 virions and significantly decreased the intracellular levels of overexpressed PCV2 Cap, which was reversed by treatment with a proteasome inhibitor or by rescuing IPO5 expression. Cycloheximide treatment showed that IPO5 increases the stability of the PCV2 Cap protein. Taken together, our findings demonstrated that during infection, IPO5 facilitates PCV2 replication by directly binding to the nuclear localization signal of Cap to block proteasome degradation. IMPORTANCE Circovirus is the smallest virus to cause immune suppression in pigs. The capsid protein (Cap) is the only viral structural protein that is closely related to viral infection. The nuclear entry and stability of Cap are necessary for PCV2 replication. However, the molecular mechanism maintaining the stability of Cap during nuclear trafficking of PCV2 is unknown. Here, we report that IPO5 aggregates within the nuclear periphery and combines with incoming PCV2 capsids to promote their nuclear entry. Concurrently, IPO5 inhibits the degradation of newly synthesized Cap protein, which facilitates the synthesis of virus proteins and virus replication. These findings highlight a mechanism whereby IPO5 plays a dual role in PCV2 infection, which not only enriches our understanding of the virus replication cycle but also lays the foundation for the subsequent development of antiviral drugs.


Asunto(s)
Proteínas de la Cápside , Infecciones por Circoviridae , Circovirus , Carioferinas , Enfermedades de los Porcinos , Animales , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Infecciones por Circoviridae/veterinaria , Circovirus/metabolismo , Porcinos , Virión/metabolismo , Carioferinas/metabolismo , Enfermedades de los Porcinos/virología
14.
Front Microbiol ; 13: 943707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992698

RESUMEN

The highly virulent and antigenic variant of Pseudorabies virus (PRV) that emerged from classical Bartha-K61-vaccinated pig herds has caused substantial economic losses to the swine industry in China since 2011. A safe and more effective vaccine is most desirable. In this study, a gE/TK gene-deficient PRV, namely, HD/c, was constructed based on a PRV type II DX strain isolated from a commercial vaccine-immunized farm and the HD/c-based inactivated vaccine was formulated and evaluated for its safety, immunogenicity, and protective efficacy in mice and piglets. The resulting PRV HD/c strain has a similar growth curve to the parental DX strain. After vaccination, the inactivated HD/c vaccine did not cause any visible gross pathological or histopathological changes in the tissues of mice and piglets and provided rapid and potent protection against the challenge of the classical and variant PRVs at day 21 post-vaccination in mice. A single immunization of 108.5TCID50 inactivated PRV HD/c strain-elicited robust immunity with high titer of neutralizing antibody and provided complete protection from the lethal challenge of PRV DX strain in piglets. These results indicated that the inactivated PRV HD/c vaccine with the deletion of gE/TK genes was a safe and effective PRV vaccine candidate for the control of PRV.

15.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2883-2890, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-36002417

RESUMEN

African swine fever virus (ASFV) infection leads to a mortality rate of up to 100%, causing devastating disasters to the pig industry. Understanding the ASFV infection and replication is therefore of great importance. ASFV has more than 150 open reading frames, among which the inner coat protein p17 encoded by the D117L gene is involved in the formation of the icosahedral structure of the virus. However, little is known about the mechanism how p17 regulates host cell function. In this study, the potential host proteins interacting with ASFV p17 were screened by immunoprecipitation technique combined with protein profiling analysis. The interactions of p17 with mitochondrial membrane protein TOMM70 and heat shock protein HSPA8 were confirmed by co-immunoprecipitation technique and laser confocal experiments. This study provides important information for further exploring the function of p17 during ASFV infection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Sistemas de Lectura Abierta , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Front Microbiol ; 13: 963218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979484

RESUMEN

H6-subtype avian influenza virus (AIV) was prevalent in the world and could sporadically infect humans. Here, a new chicken-derived H6N6-subtype AIV strain A/chicken/Zhejiang/49/2021 (ZJ49) was isolated in Zhejiang Province, China in 2021. Phylogenetic analysis by Maximum likelihood methods showed that H6-subtype AIVs were classed into 13 groups according to HA gene. The ZJ49 strain belonged to the G12 group, which mainly consisted of strains from Asian and dominated in recent years. Based on NA gene, H6-subtype AIVs were divided into N6.1 and N6.2 clades according to the NA gene. The ZJ49 isolate was located in the N6.2e clade, which mainly consisted of the H5N6-subtype AIVs. Phylogenetic analysis by Bayesian methods showed that the effective quantity size of H6-subtype AIVs increased around 1990, reached a peak around 2015, declined after 2015, then kept in a stable level after 2018. The reassortment analysis predicted that the PB2, PA, and NA genes of ZJ49 may recombine with H5-subtype AIVs. The amino acid at 222 position of HA gene of ZJ49 strain mutated from A to V, suggesting that ZJ49 has a potential ability to cross species barriers. The four glycosylation sites were highly conserved, implying less impact on the fold and conception of HA stem structure. Our results revealed the complicated evolution, reassortment, and mutations of receptor binding sites of H6-subtype AIVs, which emphasize the importance to continuously monitor the epidemiology and evolution of H6-subtype AIVs.

17.
Viruses ; 14(6)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35746813

RESUMEN

The CD69 molecule, as an early activation marker of lymphocytes, is often used to assess the activation of cellular immunity. However, for pigs, an anti-pig CD69 antibody is not yet available for this purpose after infection or vaccination. In this study, a monoclonal antibody (mAb) against pig CD69 was produced by peptide immunization and hybridoma technique. One mAb (5F12) showed good reactivity with pig CD69 that was expressed in transfected-HEK-293T cells and on mitogen-activated porcine peripheral blood mononuclear cells (PBMCs) by indirect immunofluorescence assay and flow cytometry. This mAb did not cross-react with activated lymphocytes from mouse, bovine, and chicken. Epitope mapping showed that the epitope recognized by this mAb was located at amino acid residues 147-161 of pig CD69. By conjugating with fluorochrome, this mAb was used to detect the early activation of lymphocytes in PRRSV- and ASFV-infected pigs by flow cytometry. The results showed that PRRSV infection induced the dominant activation of CD4 T cells in mediastinal lymph nodes and CD8 T cells in the spleen at 14 days post-infection, in terms of CD69 expression. In an experiment on ASFV infection, we found that ASFV infection resulted in the early activation of NK cells, B cells, and distinct T cell subsets with variable magnitude in PBMCs, spleen, and submandibular lymph nodes. Our study revealed an early event of lymphocyte and T cell activation after PRRSV and ASFV infections and provides an important immunological tool for the in-depth analysis of cellular immune response in pigs after infection or vaccination.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Anticuerpos Monoclonales/metabolismo , Bovinos , Leucocitos Mononucleares , Activación de Linfocitos , Ratones , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Porcinos
18.
Autophagy ; 18(12): 2781-2798, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35266845

RESUMEN

Ubiquitination is an important reversible post-translational modification. Many viruses hijack the host ubiquitin system to enhance self-replication. In the present study, we found that Avibirnavirus VP3 protein was ubiquitinated during infection and supported virus replication by ubiquitination. Mass spectrometry and mutation analysis showed that VP3 was ubiquitinated at residues K73, K135, K158, K193, and K219. Virus rescue showed that ubiquitination at sites K73, K193, and K219 on VP3 could enhance the replication abilities of infectious bursal disease virus (IBDV), and that K135 was essential for virus survival. Binding of the zinc finger domain of TRAF6 (TNF receptor associated factor 6) to VP3 mediated K11- and K33-linked ubiquitination of VP3, which promoted its nuclear accumulation to facilitate virus replication. Additionally, VP3 could inhibit TRAF6-mediated NFKB/NF-κB (nuclear factor kappa B) activation and IFNB/IFN-ß (interferon beta) production to evade host innate immunity by inducing TRAF6 autophagic degradation in an SQSTM1/p62 (sequestosome 1)-dependent manner. Our findings demonstrated a macroautophagic/autophagic mechanism by which Avibirnavirus protein VP3 blocked NFKB-mediated IFNB production by targeting TRAF6 during virus infection, and provided a potential drug target for virus infection control.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Cas9: CRISPR-associated protein 9; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione S-transferase; IBDV: infectious bursal disease virus; IF: indirect immunofluorescence; IFNB/IFN-ß: interferon beta; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MS: mass spectrometry; NFKB/NF-κB: nuclear factor kappa B; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; pAb: polyclonal antibody; PRRs: pattern recognition receptors; RNF125: ring finger protein 125; RNF135/Riplet: ring finger protein 135; SQSTM1/p62: sequestosome 1; TAX1BP1: tax1 binding protein1; TCID50: 50% tissue culture infective dose; TRAF3: TNF receptor associated factor 3; TRAF6: TNF receptor associated factor 6; TRIM25: tripartite motif containing 25; Ub: ubiquitin; Wort: wortmannin; WT: wild type.


Asunto(s)
Avibirnavirus , Avibirnavirus/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , FN-kappa B/metabolismo , Proteína Sequestosoma-1/metabolismo , Autofagia , Antivirales , Inmunidad Innata , Ubiquitina/metabolismo , Interferón beta/metabolismo
19.
Viruses ; 13(12)2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960763

RESUMEN

Selective autophagy mediates the degradation of cytoplasmic cargos, such as damaged organelles, invading pathogens, and protein aggregates. However, whether it targets double-stranded RNA (dsRNA) of intracellular pathogens is still largely unknown. Here, we show that selective autophagy regulates the degradation of the infectious bursal disease virus (IBDV) dsRNA genome. The amount of dsRNA decreased greatly in cells that overexpressed the autophagy-required protein VPS34 or autophagy cargo receptor SQSTM1, while it increased significantly in SQSTM1 or VPS34 knockout cells or by treating wild-type cells with the autophagy inhibitor chloroquine or wortmannin. Confocal microscopy and structured illumination microscopy showed SQSTM1 colocalized with dsRNA during IBDV infection. A pull-down assay further confirmed the direct binding of SQSTM1 to dsRNA through amino acid sites R139 and K141. Overexpression of SQSTM1 inhibited the replication of IBDV, while knockout of SQSTM1 promoted IBDV replication. Therefore, our findings reveal the role of SQSTM1 in clearing viral dsRNA through selective autophagy, highlighting the antiviral role of autophagy in the removal of the viral genome.


Asunto(s)
Autofagia/fisiología , Infecciones por Birnaviridae/prevención & control , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Proteína Sequestosoma-1/fisiología , Células HEK293 , Humanos , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Replicación Viral
20.
mBio ; 12(6): e0298421, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34781747

RESUMEN

Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs (ncRNAs) present in various tissues and cells. However, the functions of most circRNAs have not been verified experimentally. Here, using deltacoronavirus as a model, differentially expressed circRNAs in cells with or without deltacoronavirus infection were analyzed by RNA sequencing to characterize the cellular responses to RNA virus infection. More than 57,000 circRNA candidates were detected, and seven significantly dysregulated circRNAs were quantitated by real-time reverse transcription-PCR. We discovered a previously unidentified circRNA derived from the TNFAIP3 gene, named circTNFAIP3, which is distributed and expressed widely in various tissues. RNA viruses, including deltacoronaviruses, rather than DNA viruses tend to activate the expression of endogenous circTNFAIP3. Overexpression of circTNFAIP3 promoted deltacoronavirus replication by reducing the apoptosis, while silencing of circTNFAIP3 inhibited deltacoronavirus replication by enhancing the apoptosis. In summary, our work provides useful circRNA-related information to facilitate investigation of the underlying mechanism of deltacoronavirus infection and identifies a novel circTNFAIP3 that promotes deltacoronavirus replication via regulating apoptosis. IMPORTANCE CircRNAs, a new class of ncRNAs, play important roles in cell growth, neural development, carcinogenesis, and anticarcinogenesis. Porcine deltacoronavirus is an emerging enteropathogenic coronavirus that causes diarrhea, but the role of host circRNAs in regulating its infection is unknown. Here, we performed expression profiling of circRNAs in mock- and deltacoronavirus- infected cells and identified the novel differentially expressed circular RNA circTNFAIP3. We demonstrate that circTNFAIP3 promotes deltacoronavirus replication by inhibiting apoptosis. Our findings first illustrate that circRNA can act as an apoptosis negative regulator during RNA virus infection and help to explore the underlying mechanism of deltacoronavirus infection.


Asunto(s)
Deltacoronavirus/genética , Interacciones Microbiota-Huesped/genética , ARN Circular/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Replicación Viral/genética , Apoptosis , Línea Celular , Deltacoronavirus/fisiología , Perfilación de la Expresión Génica , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Circular/inmunología , Análisis de Secuencia de ARN , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...