Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617249

RESUMEN

DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a crucial epigenetic mechanism driving numerous vital biological processes. Developing non-nucleoside inhibitors to cause DNA hypomethylation is a high priority, in order to treat a variety of significant medical conditions without the toxicities associated with existing cytidine-based hypomethylating agents. In this study, we have characterized fifteen quinoline-based analogs. Notably, compounds with additions like a methylamine ( 9 ) or methylpiperazine ( 11 ) demonstrate similar low micromolar inhibitory potency against both human DNMT1 (which generates C5-methylcytosine) and Clostridioides difficile CamA (which generates N6-methyladenine). Structurally, compounds 9 and 11 specifically intercalate into CamA-bound DNA via the minor groove, adjacent to the target adenine, leading to a substantial conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation, following the discovery of dicyanopyridine-based inhibitors for DNMT1. Furthermore, our study shows that some of these quinoline-based analogs inhibit other enzymes that act on DNA, such as polymerases and base excision repair glycosylases. Finally, in cancer cells compound 11 elicits DNA damage response via p53 activation. Highlights: Six of fifteen quinoline-based derivatives demonstrated comparable low micromolar inhibitory effects on human cytosine methyltransferase DNMT1, and the bacterial adenine methyltransferases Clostridioides difficile CamA and Caulobacter crescentus CcrM. Compounds 9 and 11 were found to intercalate into a DNA substrate bound by CamA. These quinoline-based derivatives also showed inhibitory activity against various base excision repair DNA glycosylases, and DNA and RNA polymerases. Compound 11 provokes DNA damage response via p53 activation in cancer cells.

2.
Structure ; 32(3): 258-260, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458157

RESUMEN

In this issue of Structure, Mahana et al.1 present their structural characterization of an annotated methyl-CpG-binding domain (MBD) from the histone H3 lysine 9 methyltransferase SETDB2. This study reveals that, rather than binding DNA as previously hypothesized, this domain instead interacts with a cystine-rich domain from C11orf46, highlighting its involvement in protein-protein interactions.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN , Proteínas de Unión al ADN/química , ADN/metabolismo , Metiltransferasas/genética
3.
J Biol Chem ; 299(8): 105017, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414145

RESUMEN

Much is known about the generation, removal, and roles of 5-methylcytosine (5mC) in eukaryote DNA, and there is a growing body of evidence regarding N6-methyladenine, but very little is known about N4-methylcytosine (4mC) in the DNA of eukaryotes. The gene for the first metazoan DNA methyltransferase generating 4mC (N4CMT) was reported and characterized recently by others, in tiny freshwater invertebrates called bdelloid rotifers. Bdelloid rotifers are ancient, apparently asexual animals, and lack canonical 5mC DNA methyltransferases. Here, we characterize the kinetic properties and structural features of the catalytic domain of the N4CMT protein from the bdelloid rotifer Adineta vaga. We find that N4CMT generates high-level methylation at preferred sites, (a/c)CG(t/c/a), and low-level methylation at disfavored sites, exemplified by ACGG. Like the mammalian de novo 5mC DNA methyltransferase 3A/3B (DNMT3A/3B), N4CMT methylates CpG dinucleotides on both DNA strands, generating hemimethylated intermediates and eventually fully methylated CpG sites, particularly in the context of favored symmetric sites. In addition, like DNMT3A/3B, N4CMT methylates non-CpG sites, mainly CpA/TpG, though at a lower rate. Both N4CMT and DNMT3A/3B even prefer similar CpG-flanking sequences. Structurally, the catalytic domain of N4CMT closely resembles the Caulobacter crescentus cell cycle-regulated DNA methyltransferase. The symmetric methylation of CpG, and similarity to a cell cycle-regulated DNA methyltransferase, together suggest that N4CMT might also carry out DNA synthesis-dependent methylation following DNA replication.


Asunto(s)
ADN-Citosina Metilasas , Rotíferos , Animales , Metilación de ADN , ADN-Citosina Metilasas/química , ADN-Citosina Metilasas/aislamiento & purificación , Mamíferos/metabolismo , Rotíferos/clasificación , Rotíferos/enzimología
4.
ACS Chem Biol ; 18(4): 734-745, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37082867

RESUMEN

S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host-pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 µM) is 10× and 5× more potent against CamA than 6e and 7, respectively. The structure of the CamA-DNA-inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection.


Asunto(s)
Adenosina , Clostridioides difficile , Proteína-Arginina N-Metiltransferasas , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica) , Adenina , Adenosina/análogos & derivados , Adenosina/farmacología , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/metabolismo , Infecciones por Clostridium/tratamiento farmacológico , ADN , Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , S-Adenosilmetionina/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/antagonistas & inhibidores
5.
J Biol Chem ; 299(2): 102862, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596360

RESUMEN

The N-terminal half of PHF2 harbors both a plant homeodomain (PHD) and a Jumonji domain. The PHD recognizes both histone H3 trimethylated at lysine 4 and methylated nonhistone proteins including vaccinia-related kinase 1 (VRK1). The Jumonji domain erases the repressive dimethylation mark from histone H3 lysine 9 (H3K9me2) at select promoters. The N-terminal amino acid sequences of H3 (AR2TK4) and VRK1 (PR2VK4) bear an arginine at position 2 and lysine at position 4. Here, we show that the PHF2 N-terminal half binds to H3 and VRK1 peptides containing K4me3, with dissociation constants (KD values) of 160 nM and 42 nM, respectively, which are 4 × and 21 × lower (and higher affinities) than for the isolated PHD domain of PHF2. X-ray crystallography revealed that the K4me3-containing peptide is positioned within the PHD and Jumonji interface, with the positively charged R2 residue engaging acidic residues of the PHD and Jumonji domains and with the K4me3 moiety encircled by aromatic residues from both domains. We suggest that the micromolar binding affinities commonly observed for isolated methyl-lysine reader domains could be improved via additional functional interactions within the same polypeptide or its binding partners.


Asunto(s)
Histonas , Proteínas de Homeodominio , Lisina , Histonas/química , Lisina/química , Metilación , Péptidos/química , Unión Proteica , Dominios Proteicos , Proteínas de Homeodominio/química
6.
J Med Chem ; 66(1): 934-950, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36581322

RESUMEN

Antivirulence agents targeting endospore-transmitted Clostridioides difficile infections are urgently needed. C. difficile-specific DNA adenine methyltransferase (CamA) is required for efficient sporulation and affects persistence in the colon. The active site of CamA is conserved and closely resembles those of hundreds of related S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which makes the design of selective inhibitors more challenging. We explored the solvent-exposed edge of the SAM adenosine moiety and systematically designed 42 analogs of adenosine carrying substituents at the C6-amino group (N6) of adenosine. We compare the inhibitory properties and binding affinity of these diverse compounds and present the crystal structures of CamA in complex with 14 of them in the presence of substrate DNA. The most potent of these inhibitors, compound 39 (IC50 ∼ 0.4 µM and KD ∼ 0.2 µM), is selective for CamA against closely related bacterial and mammalian DNA and RNA adenine methyltransferases, protein lysine and arginine methyltransferases, and human adenosine receptors.


Asunto(s)
Clostridioides difficile , Metiltransferasas , Animales , Humanos , Metiltransferasas/química , Adenosina/metabolismo , Adenina/farmacología , Adenina/metabolismo , S-Adenosilmetionina/metabolismo , ADN/metabolismo , Proteína-Arginina N-Metiltransferasas , Mamíferos/metabolismo
7.
Biochemistry ; 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35605980

RESUMEN

PCIF1 and FTO are a pair of human mRNA cap-specific modification enzymes that have opposing activities. PCIF1 adds a methyl group to the N6-position of 2'O-methyladenosine (Am), generating N6, 2'O-dimethyladenosine (m6Am), when Am is the cap-proximal nucleotide. FTO removes the N6-methyl group from m6Am. In addition, FTO has a demethylase activity on a broad spectrum of various RNA substrates, as well as on DNA N6-methyldeoxyadenosine (m6dA). While the existence of m6dA in mammalian DNA remains controversial, we show here that PCIF1 has significant methylation activity on single stranded DNA deoxyadenosine, double stranded RNA/DNA hybrids, and double stranded DNA, though with lower catalytic efficiency than that on its preferred RNA substrate. PCIF1 has activities in the order ssRNA > RNA/DNA hybrid > ssDNA > dsDNA. We discuss the implications of PCIF1 generation, and FTO removal, of DNA adenine methylation.

8.
J Biol Chem ; 298(4): 101751, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189146

RESUMEN

The phosphorylated RNA polymerase II CTD interacting factor 1 (PCIF1) is a methyltransferase that adds a methyl group to the N6-position of 2'O-methyladenosine (Am), generating N6, 2'O-dimethyladenosine (m6Am) when Am is the cap-proximal nucleotide. In addition, PCIF1 has ancillary methylation activities on internal adenosines (both A and Am), although with much lower catalytic efficiency relative to that of its preferred cap substrate. The PCIF1 preference for 2'O-methylated Am over unmodified A nucleosides is due mainly to increased binding affinity for Am. Importantly, it was recently reported that PCIF1 can methylate viral RNA. Although some viral RNA can be translated in the absence of a cap, it is unclear what roles PCIF1 modifications may play in the functionality of viral RNAs. Here we show, using in vitro assays of binding and methyltransfer, that PCIF1 binds an uncapped 5'-Am oligonucleotide with approximately the same affinity as that of a cap analog (KM = 0.4 versus 0.3 µM). In addition, PCIF1 methylates the uncapped 5'-Am with activity decreased by only fivefold to sixfold compared with its preferred capped substrate. We finally discuss the relationship between PCIF1-catalyzed RNA methylation, shown here to have broader substrate specificity than previously appreciated, and that of the RNA demethylase fat mass and obesity-associated protein (FTO), which demonstrates PCIF1-opposing activities on capped RNAs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Nucleares , Caperuzas de ARN , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina/metabolismo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Viral/metabolismo
9.
Epigenetics ; 17(9): 970-981, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34523387

RESUMEN

Epigenetically targeted therapeutic development, particularly for SAM-dependent methylations of DNA, mRNA and histones has been proceeding rapidly for cancer treatments over the past few years. However, this approach has barely begun to be exploited for developing new antibiotics, despite an overwhelming global need to counter antimicrobial resistance. Here, we explore whether SAM analogues, some of which are in (pre)clinical studies as inhibitors of human epigenetic enzymes, can also inhibit Clostridioides difficile-specific DNA adenine methyltransferase (CamA), a sporulation regulator present in all C. difficile genomes sequenced to date, but found in almost no other bacteria. We found that SGC0946 (an inhibitor of DOT1L), JNJ-64619178 (an inhibitor of PRMT5) and SGC8158 (an inhibitor of PRMT7) inhibit CamA enzymatic activity in vitro at low micromolar concentrations. Structural investigation of the ternary complexes of CamA-DNA in the presence of SGC0946 or SGC8158 revealed conformational rearrangements of the N-terminal arm, with no apparent disturbance of the active site. This N-terminal arm and its modulation of exchanges between SAM (the methyl donor) and SAH (the reaction product) during catalysis of methyl transfer are, to date, unique to CamA. Our work presents a substantial first step in generating potent and selective inhibitors of CamA that would serve in the near term as chemical probes to investigate the cellular mechanism(s) of CamA in controlling spore formation and colonization, and eventually as therapeutic antivirulence agents useful in treating C. difficile infection.


Asunto(s)
Clostridioides difficile , Metiltransferasas , Adenina/farmacología , Antibacterianos , Camassia , Clostridioides difficile/genética , ADN , Metilación de ADN , Epigénesis Genética , Histonas/genética , Humanos , Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/genética , ARN Mensajero
10.
J Med Chem ; 65(1): 333-342, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34963283

RESUMEN

Although a myriad of bioorthogonal prodrugs have been developed, very few of them present both fast reaction kinetics and complete cleavage. Herein, we report a new bioorthogonal prodrug strategy with both fast reaction kinetics (k2: ∼103 M-1 s-1) and complete cleavage (>90% within minutes) using the bioorthogonal reaction pair of N-oxide and boron reagent. Distinctively, an innovative 1,6-elimination-based self-immolative linker is masked by N-oxide, which can be bioorthogonally demasked by a boron reagent for the release of both amino and hydroxy-containing payload in live cells. Such a strategy was applied to prepare a bioorthogonal prodrug for a camptothecin derivative, SN-38, resulting in 10-fold weakened cytotoxicity against A549 cells, 300-fold enhanced water solubility, and "on-demand" activation upon a click reaction both in vitro and in vivo. This novel bioorthogonal prodrug strategy presents significant advances over the existing ones and may find wide applications in drug delivery in the future.


Asunto(s)
Compuestos de Boro/química , Liberación de Fármacos , Irinotecán/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/administración & dosificación , Inhibidores de Topoisomerasa I/farmacología , Animales , Apoptosis , Proliferación Celular , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Irinotecán/química , Cinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Nanopartículas/química , Inhibidores de Topoisomerasa I/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nat Commun ; 12(1): 3436, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103525

RESUMEN

Clostridioides difficile infections are an urgent medical problem. The newly discovered C. difficile adenine methyltransferase A (CamA) is specified by all C. difficile genomes sequenced to date (>300), but is rare among other bacteria. CamA is an orphan methyltransferase, unassociated with a restriction endonuclease. CamA-mediated methylation at CAAAAA is required for normal sporulation, biofilm formation, and intestinal colonization by C. difficile. We characterized CamA kinetic parameters, and determined its structure bound to DNA containing the recognition sequence. CamA contains an N-terminal domain for catalyzing methyl transfer, and a C-terminal DNA recognition domain. Major and minor groove DNA contacts in the recognition site involve base-specific hydrogen bonds, van der Waals contacts and the Watson-Crick pairing of a rearranged A:T base pair. These provide sufficient sequence discrimination to ensure high specificity. Finally, the surprisingly weak binding of the methyl donor S-adenosyl-L-methionine (SAM) might provide avenues for inhibiting CamA activity using SAM analogs.


Asunto(s)
Adenina/metabolismo , Clostridioides/enzimología , ADN Bacteriano/química , Conformación de Ácido Nucleico , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Emparejamiento Base , Secuencia de Bases , Coenzimas/metabolismo , Modelos Moleculares , Motivos de Nucleótidos , S-Adenosilhomocisteína/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Especificidad de la Especie , Especificidad por Sustrato
12.
Biochem J ; 478(10): 1943-1958, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33969871

RESUMEN

The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including (1) removal of the initiator methionine residue of H3 to prevent steric interference, (2) a groove where arginine-2 binds, and (3) an aromatic cage that engages methylated lysine-4. We hypothesize that some PHDs might have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ∼3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.


Asunto(s)
Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Histonas/química , Histonas/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteoma/análisis , Proteoma/metabolismo
13.
Nucleic Acids Res ; 48(18): 10329-10341, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663306

RESUMEN

The recently characterized mammalian writer (methyltransferase) and eraser (demethylase) of the DNA N6-methyladenine (N6mA) methyl mark act on single-stranded (ss) and transiently-unpaired DNA. As YTH domain-containing proteins bind N6mA-containing RNA in mammalian cells, we investigated whether mammalian YTH domains are also methyl mark readers of N6mA DNA. Here, we show that the YTH domain of YTHDC1 (known to localize in the nucleus) binds ssDNA containing N6mA, with a 10 nM dissociation constant. This binding is stronger by a factor of 5 than in an RNA context, tested under the same conditions. However, the YTH domains of YTHDF2 and YTHDF1 (predominantly cytoplasmic) exhibited the opposite effect with ∼1.5-2נstronger binding to ssRNA containing N6mA than to the corresponding DNA. We determined two structures of the YTH domain of YTHDC1 in complex with N6mA-containing ssDNA, which illustrated that YTHDC1 binds the methylated adenine in a single-stranded region flanked by duplexed DNA. We discuss the hypothesis that the writer-reader-eraser of N6mA-containining ssDNA is associated with maintaining genome stability. Structural comparison of YTH and SRA domains (the latter a DNA 5-methylcytosine reader) revealed them to be diverse members of a larger family of DNA/RNA modification readers, apparently having originated from bacterial modification-dependent restriction enzymes.


Asunto(s)
Adenina/química , Complejos Multiproteicos/química , Proteínas del Tejido Nervioso/química , Conformación Proteica , Factores de Empalme de ARN/química , ADN/química , ADN/genética , ADN/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Histona Demetilasas/genética , Humanos , Metilación , Metiltransferasas/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/ultraestructura , Dominios Proteicos/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/ultraestructura , Proteínas de Unión al ARN/genética
14.
Fish Shellfish Immunol ; 43(2): 460-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25655327

RESUMEN

MAVS (mitochondria antiviral signaling protein) plays an important role in the host cellular innate immune response against microbial pathogens. In this study, MAVS has been cloned and characterized from black carp (Mylopharyngodon piceus). The full-length cDNA of black carp MAVS (bcMAVS) consists of 2352 nucleotides and the predicted bcMAVS protein contains 579 amino acids. Structural analysis showed that bcMAVS is composed of functional domains including an N-terminal CARD, a central proline-rich domain, a putative TRAF2-binding motif and a C-terminal TM domain, which is similar to mammalian MAVS. bcMAVS is constitutively transcribed in all the selected tissues including gill, kidney, heart, intestine, liver, muscle, skin and spleen; bcMAVS mRNA level in intestine, liver, muscle increased but decreased in spleen right after GCRV or SVCV infection. Multiple bands of bcMAVS were detected in western blot when it was expressed in tissue culture, which is similar to mammalian MAVS. Immunofluorescence assay determined that bcMAVS is a mitochondria protein and luciferase reporter assay demonstrated that bcMAVS could induce zebrafish IFN and EPC IFN expression in tissue culture. Data generated in this manuscript has built a solid foundation for further elucidating the function of bcMAVS in the innate immune system of black carp.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cyprinidae , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica , Inmunidad Innata , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Filogenia , Reoviridae/fisiología , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/genética , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...