Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Exp Bot ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39269320

RESUMEN

Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone distributions. In this review, we provide an overview of the currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues for future research in this field to further enhance our understanding of plant hormone biology.

2.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4015-4021, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307736

RESUMEN

The unstable quality of Polyporus umbellatus sclerotia during cultivation is the key factor affecting the quality and yield of P. umbellatus sclerotia. In order to provide technical support for obtaining superior P. umbellatus by molecular breeding, the genetic transformation system mediated by Agrobacterium tumefaciens was studied in this paper. A. tumefaciens-mediated method was used to investigate the effects of antibiotic concentration, strain type, A. tumefaciens concentration, receptor material, infection time, co-culture time, and screening conditions on the genetic transformation efficiency of P. umbellatus. The transformants were screened and detected by hygromycin resistance marker genes, polymerase chain reaction(PCR) of specific primers, and fluorescence detection methods. The results showed that the A. tumefaciens GV3101 strain could genetically transfer P. umbellatus mycelium cells, and the optimal conditions for infection were as follows: the A. tumefaciens concentration A_(600 nm)= 0.6, P. umbellatus mycelium cells as receptor material, infection time of 30 min, and co-culture time of 3 days. The two-step screening method involving hygromycin of 9 and 13 µg·mL~(-1 )was the best screening condition. The results of hygromycin resistance screening, PCR detection of specific primers, and fluorescence detection showed that the exogenous gene eGFP had been transferred into the P. umbellatus mycelium cells, integrated into the genome, and successfully expressed. Under optimal conditions, the conversion efficiency could be increased to 2.3%, and the genetic transformation period was shortened from more than 90 days to less than 60 days. This study established and optimized the genetic transformation system of P. umbellatus mycelium cells mediated by A. tumefaciens, laying a foundation for the analysis of the molecular mechanism of P. umbellatus during growth and molecular breeding.


Asunto(s)
Agrobacterium tumefaciens , Polyporus , Transformación Genética , Agrobacterium tumefaciens/genética , Polyporus/genética
3.
Sci Total Environ ; 954: 176350, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39304142

RESUMEN

Polylactic acid (PLA), as a biodegradable plastic, exhibits high sensitivity to ultraviolet (UV) radiation, yet the mechanisms and environmental risks of its photoaging remain unclear. This study uses quantum chemical calculations (DFT and TD-DFT) and kinetic simulations to explore the direct and indirect photoaging of PLA. Direct photoaging indicates that the highest oscillator intensity absorption peaks occurred at 172 and 246 nm, corresponding to the 13th singlet (S13) and 48th triplet (T48) states, thereby initiating the Norrish I and Norrish II mechanisms. The innovative "electron-hole" technology effectively clarifies the variations in photoaging mechanisms under different wavelengths. Indirect photoaging involves multiple reactive oxygen species (ROS) like •OH, 1O2, •O2-, and •HO2. The study confirms the anhydride production hypothesis and proposes two novel •OH-induced mechanisms: carbonyl carbon addition and branched methyl hydrogen dehydrogenation. Both mechanisms are thermodynamically advantageous, but their products pose potential environmental risks. ROS species and concentrations impact both PLA's photoaging mechanisms and environmental persistence. Low •OH concentration in northeast China, especially in winter, suggests a significant photoaging risk. This study offers pioneering insights into photoaging mechanisms and emphasizes the pivotal role of ROS, offering recommendations for managing PLA environmental impacts and fates in China.

4.
Biomolecules ; 14(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39334891

RESUMEN

Cytochrome P450 enzymes (P450s) play a critical role in drug metabolism, with the CYP3A subfamily being responsible for the biotransformation of over 50% of marked drugs. While CYP3A enzymes are known for their extensive catalytic versatility, one intriguing and less understood function is the ability to mediate carbon-carbon (C-C) bond cleavage. These uncommon reactions can lead to unusual metabolites and potentially influence drug safety and efficacy. This review focuses on examining examples of C-C bond cleavage catalyzed by CYP3A, exploring the mechanisms, physiological significance, and implications for drug metabolism. Additionally, examples of CYP3A-mediated ring expansion via C-C bond cleavages are included in this review. This work will enhance our understanding of CYP3A-catalyzed C-C bond cleavages and their mechanisms by carefully examining and analyzing these case studies. It may also guide future research in drug metabolism and drug design, improving drug safety and efficacy in clinical practice.


Asunto(s)
Carbono , Citocromo P-450 CYP3A , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/química , Humanos , Carbono/metabolismo , Carbono/química , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/química , Animales
5.
Chemosphere ; 363: 142875, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019182

RESUMEN

In this work, it was found that peroxymonosulfate (PMS) could appreciably accelerate the transformation rates of dichloroacetonitrile (DCAN) and trichloracetonitrile (TCAN) in aqueous solutions, especially under alkaline pHs. The impact of reactive oxygen species scavengers (methyl alcohol for sulfate radical, tert-butyl alcohol for hydroxyl radical, and azide for singlet oxygen) and water matrices (chloride (Cl-), bicarbonate (HCO3-), and natural organic matter (NOM)) on DCAN and TCAN transformation by PMS is evaluated, revealing negligible effects. A nucleophilic hydrolysis pathway, as opposed to an oxidation process, was proposed for the transformation of DCAN and TCAN by PMS, supported by the hydrolyzable characteristics of these compounds and validated through density functional theory calculations. Kinetic analysis indicated that the transformation of DCAN and TCAN by PMS adhered to a second-order kinetic law, with higher reaction rates observed at elevated pH levels within the range of 7.0-10.0. Kinetic modeling incorporating the hydrolytic contributions of water, hydroxyl ion, and protonated and deprotonated PMS (i.e., HSO5- and SO52-) effectively fitted the experimental data. Species-specific second-order rate constants reveal that SO52- exhibited significantly higher reactivity towards DCAN ((1.69 ± 0.22) × 104 M-1h-1) and TCAN ((6.06 ± 0.18) × 104 M-1h-1) compared to HSO5- ((2.14 ± 0.12) × 102 M-1h-1) for DCAN; and (1.378 ± 0.11) × 103 M-1h-1 for TCAN). Comparative analysis of DCAN and TCAN transformation efficiencies by four different oxidants indicated that PMS rivaled chlorine but falls short of hydrogen peroxide, with peroxydisulfate displaying negligible reactivity. Overall, this study uncovers the nucleophilic hydrolysis characteristics of PMS, supplementing its recognized role as an oxidant precursor or mild oxidant, and underscores its significant implications for environmental remediation.


Asunto(s)
Acetonitrilos , Desinfección , Peróxidos , Contaminantes Químicos del Agua , Cinética , Hidrólisis , Acetonitrilos/química , Peróxidos/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Concentración de Iones de Hidrógeno
6.
Molecules ; 29(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064876

RESUMEN

The interplay between the human innate immune system and bacterial cell wall components is pivotal in understanding diseases such as Crohn's disease and Lyme arthritis. Lyme disease, caused by Borrelia burgdorferi, is the most prevalent tick-borne illness in the United States, with a substantial number of cases reported annually. While antibiotic treatments are generally effective, approximately 10% of Lyme disease cases develop persistent arthritis, suggesting a dysregulated host immune response. We have previously identified a link between the immunogenic B. burgdorferi peptidoglycan (PG) and Lyme arthritis and showed that this pathogen sheds significant amounts of PG fragments during growth. Here, we synthesize these PG fragments, including ornithine-containing monosaccharides and disaccharides, to mimic the unique composition of Borrelia cell walls, using reproducible and rigorous synthetic methods. This synthetic approach allows for the modular preparation of PG derivatives, providing a diverse library of well-defined fragments. These fragments will serve as valuable tools for investigating the role of PG-mediated innate immune response in Lyme disease and aid in the development of improved diagnostic methods and treatment strategies.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Borrelia burgdorferi/inmunología , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/tratamiento farmacológico , Humanos , Peptidoglicano/química , Peptidoglicano/inmunología , Pared Celular/química
8.
Insects ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921138

RESUMEN

Insect life processes and reproductive behaviors are significantly affected by extremely high temperatures. This study focused on Tuta absoluta, which poses a severe threat to tomato cultivars. The effects of intense heat stress on the growth, development, oviposition, and longevity of T. absoluta were investigated. This investigation encompassed various developmental stages, including eggs, pupae, and adults. This study revealed that egg hatching and pupa emergence rates were significantly reduced at a temperature of 44 °C maintained for 6 h. The longevity of adults that emerged after the egg and pupal stages were exposed to 44 °C for 6 h was significantly reduced compared to the control. Notably, there was no significant variation in adult fecundity after egg-stage exposure to high temperatures. However, all treatments exhibited significantly reduced fecundity compared to the control after exposure to high temperatures during the pupal stage. Adult survival rates after exposure to 40 °C and 44 °C for 3 h were 74.29% and 22.40%, respectively, dramatically less than that of the control, which was 100%. However, no significant differences were noted in terms of longevity and egg production. These results offer a better understanding of the complex interactions between extreme temperatures and the life history traits of T. absoluta, thereby offering valuable insights for implementing management strategies to alleviate its impact on tomato crops in response to climate change.

9.
Mol Nutr Food Res ; 68(14): e2400004, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38840434

RESUMEN

Fatigue, a common symptom in both diseased and healthy individuals, is a biological phenomenon characterized by a sense of extreme physical or mental exhaustion. To explore novel drugs and food sources of anti-fatigue, the hydroalcoholic extract of the root of Mirabilis himalaica (MH extract) is evaluated as anti-fatigue agents in this work, and clarifies that the mechanism of MH intervention in fatigue symptoms, and distribution of the anti-fatigue constituents in the plant of Mirabilis himalaica is examined. The results show that the MH extract have a significantly anti-fatigue effect via the pharmacological experiment and biochemical indicators. The network pharmacology, metabolomics, molecular docking, and pharmacology are integrated to determine that boeravinone A, B, and E are the pharmacoperones of anti-fatigue. Moreover, the compounds of boeravinone are present only in the root and not in the leaf and stem of the Mirabilis himalaica, which validates that root of Mirabilis himalaica is historically and officially utilized medicinal parts.


Asunto(s)
Fatiga , Metabolómica , Mirabilis , Simulación del Acoplamiento Molecular , Farmacología en Red , Extractos Vegetales , Raíces de Plantas , Raíces de Plantas/química , Extractos Vegetales/farmacología , Metabolómica/métodos , Fatiga/tratamiento farmacológico , Animales , Masculino , Ratas Sprague-Dawley
10.
Sci Total Environ ; 946: 174081, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38908575

RESUMEN

Biochar is a porous carbon material generated by the thermal treatment of biomass under anaerobic or anoxic conditions with wealthy Oxygen-containing functional groups (OCFGs). To date, OCFGs of biochar have been extensively studied for their significant utility in pollutant removal, catalysis, capacitive applications, etc. This review adopted a whole system philosophy and systematically summarizes up-to-date knowledge of formation, detection methods, engineering, and application for OCFGs. The formation mechanisms and detection methods of OCFGs, as well as the relationships between OCFGs and pyrolysis conditions (such as feedstocks, temperature, atmosphere, and heating rate), were discussed in detail. The review also summarized strategies and mechanisms for the oxidation of biochar to afford OCFGs, with the performances and mechanisms of OCFGs in the various application fields (environmental remediation, catalytic biorefinery, and electrode material) being highlighted. In the end, the future research direction of biochar OCFGs was put forward.

11.
Cell Rep ; 43(6): 114269, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38787725

RESUMEN

The 2022 mpox outbreak led the World Health Organization (WHO) to declare it a public health emergency of international concern (PHEIC). There is a need to develop more effective and safer mpox virus (MPXV)-specific vaccines in response to the mpox epidemic. The mRNA vaccine is a promising platform to protect against MPXV infection. In this study, we construct two bivalent MPXV mRNA vaccines, designated LBA (B6R-A29L) and LAM (A35R-M1R), and a quadrivalent mRNA vaccine, LBAAM (B6R-A35R-A29L-M1R). The immunogenicity and protective efficacy of these vaccines alone or in combination were evaluated in a lethal mouse model. All mRNA vaccine candidates could elicit potential antigen-specific humoral and cellular immune responses and provide protection against vaccinia virus (VACV) infection. The protective effect of the combination of two bivalent mRNA vaccines and the quadrivalent vaccine was superior to that of the individual bivalent mRNA vaccine. Our study provides valuable insights for the development of more efficient and safer mRNA vaccines against mpox.


Asunto(s)
Virus Vaccinia , Vacunas de ARNm , Animales , Virus Vaccinia/inmunología , Virus Vaccinia/genética , Ratones , Femenino , Vacunas de ARNm/inmunología , Humanos , Ratones Endogámicos BALB C , Mpox/prevención & control , Mpox/inmunología , Vaccinia/inmunología , Vaccinia/prevención & control , Anticuerpos Antivirales/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Inmunidad Humoral
12.
Plant Commun ; 5(7): 100929, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38678366

RESUMEN

The endoplasmic reticulum (ER) and the plasma membrane (PM) form ER-PM contact sites (EPCSs) that allow the ER and PM to exchange materials and information. Stress-induced disruption of protein folding triggers ER stress, and the cell initiates the unfolded protein response (UPR) to resist the stress. However, whether EPCSs play a role in ER stress in plants remains unclear. VESICLE-ASSOCIATED MEMBRANE PROTEIN (VAMP)-ASSOCIATED PROTEIN 27-1 (VAP27-1) functions in EPCS tethering and is encoded by a family of 10 genes (VAP27-1-10) in Arabidopsis thaliana. Here, we used CRISPR-Cas9-mediated genome editing to obtain a homozygous vap27-1 vap27-3 vap27-4 (vap27-1/3/4) triple mutant lacking three of the key VAP27 family members in Arabidopsis. The vap27-1/3/4 mutant exhibits defects in ER-PM connectivity and EPCS architecture, as well as excessive UPR signaling. We further showed that relocation of VAP27-1 to the PM mediates specific VAP27-1-related EPCS remodeling and expansion under ER stress. Moreover, the spatiotemporal dynamics of VAP27-1 at the PM increase ER-PM connectivity and enhance Arabidopsis resistance to ER stress. In addition, we revealed an important role for intracellular calcium homeostasis in the regulation of UPR signaling. Taken together, these results broaden our understanding of the molecular and cellular mechanisms of ER stress and UPR signaling in plants, providing additional clues for improving plant broad-spectrum resistance to different stresses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Respuesta de Proteína Desplegada/genética
13.
Nat Commun ; 15(1): 3623, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684703

RESUMEN

Solanaceous plants produce tropane alkaloids (TAs) via esterification of 3α- and 3ß-tropanol. Although littorine synthase is revealed to be responsible for 3α-tropanol esterification that leads to hyoscyamine biosynthesis, the genes associated with 3ß-tropanol esterification are unknown. Here, we report that a BAHD acyltransferase from Atropa belladonna, 3ß-tigloyloxytropane synthase (TS), catalyzes 3ß-tropanol and tigloyl-CoA to form 3ß-tigloyloxytropane, the key intermediate in calystegine biosynthesis and a potential drug for treating neurodegenerative disease. Unlike other cytosolic-localized BAHD acyltransferases, TS is localized to mitochondria. The catalytic mechanism of TS is revealed through molecular docking and site-directed mutagenesis. Subsequently, 3ß-tigloyloxytropane is synthesized in tobacco. A bacterial CoA ligase (PcICS) is found to synthesize tigloyl-CoA, an acyl donor for 3ß-tigloyloxytropane biosynthesis. By expressing TS mutant and PcICS, engineered Escherichia coli synthesizes 3ß-tigloyloxytropane from tiglic acid and 3ß-tropanol. This study helps to characterize the enzymology and chemodiversity of TAs and provides an approach for producing 3ß-tigloyloxytropane.


Asunto(s)
Aciltransferasas , Mitocondrias , Tropanos , Aciltransferasas/metabolismo , Aciltransferasas/genética , Mitocondrias/metabolismo , Mitocondrias/enzimología , Tropanos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutagénesis Sitio-Dirigida
14.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587080

RESUMEN

BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).


Asunto(s)
Anticuerpos Neutralizantes , Rociadores Nasales , Animales , Cricetinae , Humanos , China , Tráquea , Voluntarios Sanos
16.
Foods ; 13(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338633

RESUMEN

Developing a fast and non-destructive methodology to identify the storage years of Coix seed is important in safeguarding consumer well-being. This study employed the utilization of hyperspectral imaging (HSI) in conjunction with conventional machine learning techniques such as support vector machines (SVM), k-nearest neighbors (KNN), random forest (RF), extreme gradient boosting (XGBoost), as well as the deep learning method of residual neural network (ResNet), to establish identification models for Coix seed samples from different storage years. Under the fusion-based modeling approach, the model's classification accuracy surpasses that of visible to near infrared (VNIR) and short-wave infrared (SWIR) spectral modeling individually. The classification accuracy of the ResNet model and SVM exceeds that of other conventional machine learning models (KNN, RF, and XGBoost). Redundant variables were further diminished through competitive adaptive reweighted sampling feature wavelength screening, which had less impact on the model's accuracy. Upon validating the model's performance using an external validation set, the ResNet model yielded more satisfactory outcomes, exhibiting recognition accuracy exceeding 85%. In conclusion, the comprehensive results demonstrate that the integration of deep learning with HSI techniques effectively distinguishes Coix seed samples from different storage years.

17.
Plant Cell Rep ; 43(3): 62, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336832

RESUMEN

KEY MESSAGE: Yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells leads to the biosynthesis of various hormones, which activates specific signaling pathways that augments biphenyl phytoalexin production. Pathogen incursions pose a significant threat to crop yield and can have a pronounced effect on agricultural productivity and food security. Biphenyl phytoalexins are a specialized group of secondary metabolites that are mainly biosynthesized by Pyrinae plants as a defense mechanism against various pathogens. Despite previous research demonstrating that biphenyl phytoalexin production increased dramatically in Sorbus aucuparia suspension cells (SASCs) treated with yeast extract (YE), the underlying mechanisms remain poorly understood. To address this gap, we conducted an in-depth, multi-omics analysis of transcriptome, proteome, and metabolite (including biphenyl phytoalexins and phytohormones) dynamics in SASCs exposed to YE. Our results indicated that exposure to YE-induced oxidative stress in SASCs, leading to the biosynthesis of a range of hormones, including jasmonic acid (JA), jasmonic acid isoleucine (JA-ILE), gibberellin A4 (GA4), indole-3-carboxylic acid (ICA), and indole-3-acetic acid (IAA). These hormones activated specific signaling pathways that promoted phenylpropanoid biosynthesis and augmented biphenyl phytoalexin production. Moreover, reactive oxygen species (ROS) generated during this process also acted as signaling molecules, amplifying the phenylpropanoid biosynthesis cascade through activation of the mitogen-activated protein kinase (MAPK) pathway. Key genes involved in these signaling pathways included SaBIS1, SaBIS2, SaBIS3, SaPAL, SaB4H, SaOMT, SaUGT1, SaLOX2, SaPR1, SaCHIB1, SaCHIB2 and SaCHIB3. Collectively, this study provided intensive insights into biphenyl phytoalexin accumulation in YE-treated SASCs, which would inform the development of more efficient disease-resistance strategies in economically significant cultivars.


Asunto(s)
Compuestos de Bifenilo , Ciclopentanos , Oxilipinas , Sesquiterpenos , Sorbus , Fitoalexinas , Sorbus/genética , Sorbus/metabolismo , Multiómica , Estrés Oxidativo , Hormonas/metabolismo , Sesquiterpenos/metabolismo
18.
Plant Commun ; 5(5): 100823, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38243597

RESUMEN

The inducible CRISPR activation (CRISPR-a) system offers unparalleled precision and versatility for regulating endogenous genes, making it highly sought after in plant research. In this study, we developed a chemically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system. We systematically compared different induction strategies and achieved high efficiency in target gene activation. We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration. Further experiments showed that induced activation of these morphogenic genes can accelerate regeneration and improve regeneration efficiency in both eudicot and monocot plants, including alfalfa, woodland strawberry, and sheepgrass. Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.


Asunto(s)
Regeneración , Regeneración/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas
19.
Biomed Chromatogr ; 38(4): e5818, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38230827

RESUMEN

To optimize the extraction process of crude polysaccharides from Atractylodes and elaborate the mechanism of Atractylodes polysaccharides in treating diarrhea owing to spleen deficiency, so as to lay a foundation for further development and utilization of Atractylodes lancea, we used an orthogonal test to optimize the extraction process and established a model of spleen deficiency. It was further combined with histopathology and intestinal flora to elaborate the mechanism of Atractylodes polysaccharides in the treatment of spleen-deficiency diarrhea. The optimized extraction conditions were as follows: the ratio of material to liquid was 1:25; the rotational speed was 150 rpm; the extraction temperature was 60°C; the extraction time was 2 h; and the extraction rate was about 23%. The therapeutic effect of Atractylodes polysaccharides on a spleen-deficiency diarrhea model in mice showed that the water content of stools and diarrhea grade in the treatment group were alleviated, and the levels of gastrin, motilin and d-xylose were improved. The analysis results based on gut microbiota showed that the model group had a higher diversity of gut microbiota than the normal group and treatment group, and the treatment group could correct the diversity of gut microbiota in model mice. Analysis based on the level of phylum and genus showed that the treatment group could inhibit the abundance of Helicobacter pylori genus and increase beneficial bacteria genera. The conclusion was that the optimized extraction process of Atractylodes polysaccharides was reasonable and feasible, and had a good therapeutic effect on spleen deficiency diarrhea.


Asunto(s)
Atractylodes , Microbioma Gastrointestinal , Ratones , Animales , Bazo , Atractylodes/química , Rizoma/química , Polisacáridos , Diarrea/tratamiento farmacológico
20.
Phys Chem Chem Phys ; 25(44): 30670-30678, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37933752

RESUMEN

Previous research is predominantly in consensus on the reaction mechanism between formaldehyde (HCHO) and oxygen (O2) over catalysts. However, water vapor (H2O) always remains present during the reaction, and the intrinsic role of H2O in the oxidation of HCHO still needs to be fully understood. In this study, a single-atom catalyst, Al-doped C2N substrate, Al1/C2N, can be adopted as an example to investigate the relationship and interaction among O2, H2O, and HCHO. Density functional theory (DFT) calculations and microkinetic simulations were carried out to interpret the enhancement mechanism of H2O on HCHO oxidation over Al1/C2N. The outcome demonstrates that H2O directly breaks down a surface hydroxyl group on Al1/C2N, considerably lowering the energy required to form crucial intermediates, thus promoting oxidation. Without H2O, Al1/C2N cannot effectively oxidize HCHO at ambient temperature. During oxidation, H2O takes the major catalytic responsibility, delaying the entrance of O2 into the reaction, which is not only the product but also the crucial reactant to initiate catalysis, thereby sustaining the catalytic cycle. Moreover, this study predicts the catalytic behavior at various temperatures and presents feasible recommendations for regulating the reaction rates. The oxidation mechanism of HCHO is explained at the molecular level in this study, emphasizing the intrinsic role of water on Al1/C2N, which fills in the relevant studies for HCHO oxidation on two-dimensional carbon materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA