Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(4): pgae100, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736471

RESUMEN

Heterostructures from complex oxides allow one to combine various electronic and magnetic orders as to induce new quantum states. A prominent example is the coupling between superconducting and magnetic orders in multilayers from high-Tc cuprates and manganites. A key role is played here by the interfacial CuO2 layer whose distinct properties remain to be fully understood. Here, we study with resonant inelastic X-ray scattering the magnon excitations of this interfacial CuO2 layer. In particular, we show that the underlying antiferromagnetic exchange interaction at the interface is strongly suppressed to J≈70 meV, when compared with J≈130 meV for the CuO2 layers away from the interface. Moreover, we observe an anomalous momentum dependence of the intensity of the interfacial magnon mode and show that it suggests that the antiferromagnetic order is accompanied by a particular kind of orbital order that yields a so-called altermagnetic state. Such a 2D altermagnet has recently been predicted to enable new spintronic applications and superconducting proximity effects.

2.
Nat Mater ; 23(6): 818-825, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38429520

RESUMEN

Oxygen redox cathodes, such as Li1.2Ni0.13Co0.13Mn0.54O2, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O2- ions forms O2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O2- on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O2-/O2 redox process and O2 loss. The closed voids that trap O2 grow on cycling, rendering more of the trapped O2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O2. Our findings implicate the thermodynamic driving force to form O2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.

3.
Nat Mach Intell ; 6(2): 180-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404481

RESUMEN

The removal or cancellation of noise has wide-spread applications in imaging and acoustics. In applications in everyday life, such as image restoration, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Denoising scientific data is further challenged by unknown noise profiles. In fact, such data will often include noise from multiple distinct sources, which substantially reduces the applicability of simulation-based approaches. Here we show how scientific data can be denoised by using a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction and resonant X-ray scattering data recorded on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We additionally show that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems.

4.
Phys Rev Lett ; 132(5): 056002, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364146

RESUMEN

We investigated the high energy spin excitations in electron-doped La_{2-x}Ce_{x}CuO_{4}, a cuprate superconductor, by resonant inelastic x-ray scattering (RIXS) measurements. Efforts were paid to disentangle the paramagnon signal from non-spin-flip spectral weight mixing in the RIXS spectrum at Q_{∥}=(0.6π,0) and (0.9π,0) along the (1 0) direction. Our results show that, for doping level x from 0.07 to 0.185, the variation of the paramagnon excitation energy is marginal. We discuss the implication of our results in connection with the evolution of the electron correlation strength in this system.

5.
Phys Rev Lett ; 132(6): 066004, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394564

RESUMEN

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.

6.
Adv Mater ; 36(3): e2307515, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37830432

RESUMEN

The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short-range CDW in bismuth-based cuprates. Here, high-resolution resonant inelastic x-ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2 Sr2 - x Lax CuO6 + δ . Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real-space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°-rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates.

7.
Nat Commun ; 14(1): 7198, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938250

RESUMEN

The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.

9.
Sci Adv ; 9(29): eadg3710, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37467326

RESUMEN

Most resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the qx-qy scattering plane in underdoped Bi2Sr2CaCu2O8+δ. Tracking the softening of the RIXS-measured bond-stretching phonon, we show that these dynamic correlations exist at energies below approximately 70 meV and are centered around a quasi-circular manifold in the qx-qy scattering plane with radius equal to the magnitude of the charge order wave vector, qCO. This phonon-tracking procedure also allows us to rule out fluctuations of short-range directional charge order (i.e., centered around [qx = ±qCO, qy = 0] and [qx = 0, qy = ±qCO]) as the origin of the observed correlations.

10.
BMC Plant Biol ; 23(1): 348, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403046

RESUMEN

Breeding rapeseed varieties with more main inflorescence siliques is an idea for developing rapeseed varieties that are suitable for light and simplified cultivation. The Brassica napus exhibited cluster bud of the main inflorescence (Bnclib) gene. At the fruiting stage, the main inflorescence had more siliques, higher density, and more main inflorescences. Moreover, the top of the main inflorescence bifurcated. Genetic analysis showed that the separation ratio between Bnclib and the wild type in the F2 generation was 3:1, which indicated that the trait was a single-gene-dominant inheritance. Among the 24 candidate genes, only one gene, BnaA03g53930D, showed differential expression between the groups (False discovery rate, FDR ≤ 0.05, |log2FC|≤ 1). qPCR verification of the BnaA03g53930D gene between Huyou 17 and its Bnclib near-isogenic line showed that BnaA03g53930D was significantly differentially expressed in the stem tissue of Huyou 17 and its Bnclib near-isogenic line (Bnclib NIL). The determination of gibberellin (GA), brassinolide (BR), cytokinin (CTK), jasmonic acid (JA), growth hormone (IAA), and strigolactone (SL) content in the shoot apex of Huyou 17 by Bnclib NIL and wild type showed that all six hormones significantly differed between the Bnclib NIL and Huyou 17. It is necessary to conduct further research on the interactions between JA and the other five hormones and the main inflorescence bud clustering in B. napus.


Asunto(s)
Brassica napus , Inflorescencia , Inflorescencia/genética , Brassica napus/metabolismo , Fitomejoramiento , Hormonas/metabolismo , Estudios de Asociación Genética
11.
Nature ; 618(7967): 946-950, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286603

RESUMEN

The concept of chirality is of great relevance in nature, from chiral molecules such as sugar to parity transformations in particle physics. In condensed matter physics, recent studies have demonstrated chiral fermions and their relevance in emergent phenomena closely related to topology1-3. The experimental verification of chiral phonons (bosons) remains challenging, however, despite their expected strong impact on fundamental physical properties4-6. Here we show experimental proof of chiral phonons using resonant inelastic X-ray scattering with circularly polarized X-rays. Using the prototypical chiral material quartz, we demonstrate that circularly polarized X-rays, which are intrinsically chiral, couple to chiral phonons at specific positions in reciprocal space, allowing us to determine the chiral dispersion of the lattice modes. Our experimental proof of chiral phonons demonstrates a new degree of freedom in condensed matter that is both of fundamental importance and opens the door to exploration of new emergent phenomena based on chiral bosons.

12.
Nat Commun ; 14(1): 2749, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173301

RESUMEN

A photon carrying one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (ΔMs = ±1) at most. This implies that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Herein we describe a triple-magnon excitation in α-Fe2O3, which contradicts this conventional wisdom that only 1- and 2-magnon excitations are possible in a resonant inelastic X-ray scattering experiment. We observe an excitation at exactly three times the magnon energy, along with additional excitations at four and five times the magnon energy, suggesting quadruple and quintuple-magnons as well. Guided by theoretical calculations, we reveal how a two-photon scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications.

13.
Nature ; 615(7950): 50-55, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859583

RESUMEN

The newly discovered nickelate superconductors so far only exist in epitaxial thin films synthesized by a topotactic reaction with metal hydrides1. This method changes the nickelates from the perovskite to an infinite-layer structure by deintercalation of apical oxygens1-3. Such a chemical reaction may introduce hydrogen (H), influencing the physical properties of the end materials4-9. Unfortunately, H is insensitive to most characterization techniques and is difficult to detect because of its light weight. Here, in optimally Sr doped Nd0.8Sr0.2NiO2H epitaxial films, secondary-ion mass spectroscopy shows abundant H existing in the form of Nd0.8Sr0.2NiO2Hx (x ≅ 0.2-0.5). Zero resistivity is found within a very narrow H-doping window of 0.22 ≤ x ≤ 0.28, showing unequivocally the critical role of H in superconductivity. Resonant inelastic X-ray scattering demonstrates the existence of itinerant interstitial s (IIS) orbitals originating from apical oxygen deintercalation. Density functional theory calculations show that electronegative H- occupies the apical oxygen sites annihilating IIS orbitals, reducing the IIS-Ni 3d orbital hybridization. This leads the electronic structure of H-doped Nd0.8Sr0.2NiO2Hx to be more two-dimensional-like, which might be relevant for the observed superconductivity. We highlight that H is an important ingredient for superconductivity in epitaxial infinite-layer nickelates.

14.
Nat Commun ; 13(1): 7317, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443343

RESUMEN

Among condensed matter systems, Mott insulators exhibit diverse properties that emerge from electronic correlations. In itinerant metals, correlations are usually weak, but can also be enhanced via geometrical confinement of electrons, that manifest as 'flat' dispersionless electronic bands. In the fast developing field of topological materials, which includes Dirac and Weyl semimetals, flat bands are one of the important components that can result in unusual magnetic and transport behaviour. To date, characterisation of flat bands and their magnetism is scarce, hindering the design of novel materials. Here, we investigate the ferromagnetic Kagomé semimetal Co3Sn2S2 using resonant inelastic X-ray scattering. Remarkably, nearly non-dispersive Stoner spin excitation peaks are observed, sharply contrasting with the featureless Stoner continuum expected in conventional ferromagnetic metals. Our band structure and dynamic spin susceptibility calculations, and thermal evolution of the excitations, confirm the nearly non-dispersive Stoner excitations as unique signatures of correlations and spin-polarized electronic flat bands in Co3Sn2S2. These observations serve as a cornerstone for further exploration of band-induced symmetry-breaking orders in topological materials.

15.
Nat Mater ; 21(10): 1116-1120, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35982306

RESUMEN

In materials science, much effort has been devoted to the reproduction of superconductivity in chemical compositions, analogous to cuprate superconductors since their discovery over 30 years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates1-6. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest that infinite-layer nickelates have a propensity towards various symmetry-breaking orders that populate cuprates7-10. Here we report the observation of charge density waves (CDWs) in infinite-layer NdNiO2 films using Ni L3 resonant X-ray scattering. Remarkably, CDWs form in Nd 5d and Ni 3d orbitals at the same commensurate wavevector (0.333, 0) reciprocal lattice units, with non-negligible out-of-plane dependence and an in-plane correlation length of up to ~60 Å. Spectroscopic studies reveal a strong connection between CDWs and Nd 5d-Ni 3d orbital hybridization. Upon entering the superconducting state at 20% Sr doping, the CDWs disappear. Our work demonstrates the existence of CDWs in infinite-layer nickelates with a multiorbital character distinct from cuprates, which establishes their low-energy physics.

16.
Phys Rev Lett ; 129(4): 047001, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35938998

RESUMEN

We use resonant inelastic x-ray scattering to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr_{0.9}La_{0.1}CuO_{2}. We detect a plasmon gap of ∼120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in Sr_{0.9}La_{0.1}CuO_{2} are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by layered t-J-V model calculations. A similar analysis performed on recent resonant inelastic x-ray scattering data from other cuprates suggests that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping t_{z}. Our work signifies the three dimensionality of the charge dynamics in layered cuprates and provides a new method to determine t_{z}.

17.
Nat Commun ; 13(1): 2327, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484168

RESUMEN

The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y2BaNiO5 using Ni L3-edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y2BaNiO5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations.

18.
J Synchrotron Radiat ; 29(Pt 2): 563-580, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254322

RESUMEN

The I21 beamline at Diamond Light Source is dedicated to advanced resonant inelastic X-ray scattering (RIXS) for probing charge, orbital, spin and lattice excitations in materials across condensed matter physics, applied sciences and chemistry. Both the beamline and the RIXS spectrometer employ divergent variable-line-spacing gratings covering a broad energy range of 280-3000 eV. A combined energy resolution of ∼35 meV (16 meV) is readily achieved at 930 eV (530 eV) owing to the optimized optics and the mechanics. Considerable efforts have been paid to the design of the entire beamline, particularly the implementation of the collection mirrors, to maximize the X-ray photon throughput. The continuous rotation of the spectrometer over 150° under ultra high vacuum and a cryogenic manipulator with six degrees of freedom allow accurate mappings of low-energy excitations from solid state materials in momentum space. Most importantly, the facility features a unique combination of the high energy resolution and the high photon throughput vital for advanced RIXS applications. Together with its stability and user friendliness, I21 has become one of the most sought after RIXS beamlines in the world.

19.
Adv Mater ; 34(10): e2109144, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34936713

RESUMEN

Matter-light interaction is at the center of diverse research fields from quantum optics to condensed matter physics, opening new fields like laser physics. A magnetic exciton is one such rare example found in magnetic insulators. However, it is relatively rare to observe that external variables control matter-light interaction. Here, it is reported that the broken inversion symmetry of multiferroicity can act as an external knob enabling magnetic excitons in the van der Waals antiferromagnet NiI2 . It is further discovered that this magnetic exciton arises from a transition between Zhang-Rice-triplet and Zhang-Rice-singlet fundamentally quantum-entangled states. This quantum entanglement produces an ultrasharp optical exciton peak at 1.384 eV with a 5 meV linewidth. The work demonstrates that NiI2 is 2D magnetically ordered with an intrinsically quantum-entangled ground state.

20.
Bioengineered ; 12(2): 9341-9355, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34951555

RESUMEN

Drought is one of the most important abiotic stressors that affect crop yield. Therefore, the aim of the present study was to investigate correlations between germination-stage drought tolerance and the microscopic testa (i.e., seed coat) characteristics (color and papilla morphology) and imbibition abilities of 35 rapeseed (Brassica napus L.) accessions. After 2 h imbibition, seed water uptake (fresh weight increase) was significantly positively correlated with testa hue (HHSB), brightness (BHSB,), blue (BRGB), and lightness (L*), with correlation coefficients of 0.38, 0.34, 0.53, and 0.36, respectively, and significantly negatively correlated with saturation (SHSB), greenness-redness (a*), blueness-yellowness (b*), magenta (M), and yellow components (Y), with correlation coefficients of -0.53, -0.40, -0.53, -0.39, and -0.55, respectively. Furthermore, 5-h seed water uptake was significantly positively correlated with number of papillae (No.P), mean papillae area (APA), the papillae area ratio (PAR), gray value of red channel of papillae, with correlation coefficients of 33, 0.36, 0.43, and 0.43, respectively. Under drought conditions, genotypes with more rapid water absorption exhibited higher germination rates and stronger drought tolerance, and the germination rate and drought tolerance of black-seeded accessions were highest, followed by red-seeded accessions and then yellow-seeded accessions, which exhibited the lowest germination rate and drought tolerance. Germination rate was significantly negatively correlated with BRGB, HHSB, L*, Dg, and Db and significantly positively correlated with SHSB and Y, regardless of drought conditions. At the germination stage, DbTP was negatively correlated with drought tolerance.


Asunto(s)
Adaptación Fisiológica , Brassica napus/anatomía & histología , Brassica napus/fisiología , Sequías , Germinación , Pigmentación , Semillas/anatomía & histología , Agua/metabolismo , Ecotipo , Conductividad Eléctrica , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...