Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Inorg Chem ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965790

RESUMEN

The pursuit of a straightforward method to recycle organic dyes from effluents and repurpose them into valuable materials represents a highly sought-after yet huge challenge within the realms of chemistry, environment, and materials science. In this context, we employ a host-guest strategy that leverages the recycling of the rhodamine B molecule within the porous structure of a metal-organic framework to facilitate photothermal conversion. This achievement is realized through the electrostatic interaction, which then gives rise to remarkable selectivity and unparalleled uptake capacity for the cationic rhodamine B molecule. Capitalizing on this approach, the application of a columnar device and membrane technology for efficiently trapping rhodamine B molecules becomes feasible. On account of the aggregation effect resulting from the confined pore structure of the host matrix, the fluorescence emission of the encapsulated RhB molecules is significantly reduced, which consequently enhances the photothermal performance of the hybrid material through nonradiative transition. Moreover, the photothermal conversion achieved showcases a myriad of high-performance applications, including bacterial inhibition against Escherichia coli and seawater desalination.

3.
mLife ; 3(1): 74-86, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38827515

RESUMEN

Pseudomonas aeruginosa is a ubiquitous and metabolically versatile microorganism naturally found in soil and water. It is also an opportunistic pathogen in plants, insects, animals, and humans. In response to increasing cell density, P. aeruginosa uses two acyl-homoserine lactone (AHL) quorum-sensing (QS) signals (i.e., N-3-oxo-dodecanoyl homoserine lactone [3-oxo-C12-HSL] and N-butanoyl-homoserine lactone [C4-HSL]), which regulate the expression of hundreds of genes. However, how the biosynthesis of these two QS signals is coordinated remains unknown. We studied the regulation of these two QS signals in the rhizosphere strain PA1201. PA1201 sequentially produced 3-oxo-C12-HSL and C4-HSL at the early and late growth stages, respectively. The highest 3-oxo-C12-HSL-dependent elastase activity was observed at the early stage, while the highest C4-HSL-dependent rhamnolipid production was observed at the late stage. The atypical regulator RsaL played a pivotal role in coordinating 3-oxo-C12-HSL and C4-HSL biosynthesis and QS-associated virulence. RsaL repressed lasI transcription by binding the -10 and -35 boxes of the lasI promoter. In contrast, RsaL activated rhlI transcription by binding the region encoding the 5'-untranslated region of the rhlI mRNA. Further, RsaL repressed its own expression by binding a nucleotide motif located in the -35 box of the rsaL promoter. Thus, RsaL acts as a molecular switch that coordinates the sequential biosynthesis of AHL QS signals and differential virulence in PA1201. Finally, C4-HSL activation by RsaL was independent of the Las and Pseudomonas quinolone signal (PQS) QS signaling systems. Therefore, we propose a new model of the QS regulatory network in PA1201, in which RsaL represents a superior player acting at the top of the hierarchy.

4.
Front Public Health ; 12: 1406566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827615

RESUMEN

Background: Emerging infectious diseases pose a significant threat to global public health. Timely detection and response are crucial in mitigating the spread of such epidemics. Inferring the onset time and epidemiological characteristics is vital for accelerating early interventions, but accurately predicting these parameters in the early stages remains challenging. Methods: We introduce a Bayesian inference method to fit epidemic models to time series data based on state-space modeling, employing a stochastic Susceptible-Exposed-Infectious-Removed (SEIR) model for transmission dynamics analysis. Our approach uses the particle Markov chain Monte Carlo (PMCMC) method to estimate key epidemiological parameters, including the onset time, the transmission rate, and the recovery rate. The PMCMC algorithm integrates the advantageous aspects of both MCMC and particle filtering methodologies to yield a computationally feasible and effective means of approximating the likelihood function, especially when it is computationally intractable. Results: To validate the proposed method, we conduct case studies on COVID-19 outbreaks in Wuhan, Shanghai and Nanjing, China, respectively. Using early-stage case reports, the PMCMC algorithm accurately predicted the onset time, key epidemiological parameters, and the basic reproduction number. These findings are consistent with empirical studies and the literature. Conclusion: This study presents a robust Bayesian inference method for the timely investigation of emerging infectious diseases. By accurately estimating the onset time and essential epidemiological parameters, our approach is versatile and efficient, extending its utility beyond COVID-19.


Asunto(s)
Algoritmos , Teorema de Bayes , COVID-19 , Enfermedades Transmisibles Emergentes , Cadenas de Markov , Humanos , Enfermedades Transmisibles Emergentes/epidemiología , COVID-19/epidemiología , COVID-19/transmisión , China/epidemiología , Método de Montecarlo , SARS-CoV-2 , Brotes de Enfermedades/estadística & datos numéricos , Factores de Tiempo , Modelos Epidemiológicos
5.
Rice (N Y) ; 17(1): 38, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849622

RESUMEN

Cooking quality is the main factor determining the market value of rice. Although several major genes and a certain number of QTLs controlling cooking quality have been identified, the genetic complexity and environmental susceptibility limit the further improvement for cooking quality by molecular breeding. This research conducted a genome-wide association study to elucidate the QTLs related to cooking quality including amylose content (AC), gel consistency (GC) and alkali spreading value (ASV) by using 450 rice accessions consisting of 300 indica and 150 japonica accessions in two distinct environments. A total of 54 QTLs were identified, including 25 QTLs for AC, 12 QTLs for GC and 17 QTLs for ASV. Among them, 10 QTLs were consistently observed by the same population in both environments. Six QTLs were co-localized with the reported QTLs or cloned genes. The Wx gene for AC and GC, and the ALK gene for ASV were identified in every population across the two environments. The qAC9-2 for AC and the qGC9-2 for GC were defined to the same interval. The OsRING315 gene, encoding an E3 ubiquitin ligase, was considered as the candidate gene for both qAC9-2 and qGC9-2. The higher expression of OsRING315 corresponded to the lower AC and higher GC. Three haplotypes of OsRING315 were identified. The Hap 1 mainly existed in the japonica accessions and had lower AC. The Hap 2 and Hap 3 were predominantly present in the indica accessions, associated with higher AC. Meanwhile, the GC of accessions harboring Hap 1 was higher than that of accessions harboring Hap 3. In addition, the distribution of the three haplotypes in several rice-growing regions was unbalanced. The three traits of cooking quality are controlled by both major and minor genes and susceptible to environmental factors. The expression level of OsRING315 is related to both AC and GC, and this gene can be a promising target in quality improvement by using the gene editing method. Moreover, the haplotypes of OsRING315 differentiate between indica and japonica, and reveal the differences in GC and AC between indica and japonica rice.

6.
Inorg Chem ; 63(27): 12651-12657, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922623

RESUMEN

Three coordination polymers were successfully constructed in this work by applying biligands and were distinctly characterized through single crystal X-ray diffraction. The compounds crystallized in acentric and centric space groups under the direction of coordination bonds and adopted 1-dimensional link and 2-dimensional layer structures, as well as different coordination geometries for metal atoms. All compounds exhibited good thermal stability and luminescence properties, and compound 2 exhibited a good second harmonic generation (SHG) response. The method used in this work offers a feasible approach to using biligand and changing metal salt to obtain the microstructures of coordination materials with specific properties.

7.
Am J Chin Med ; 52(4): 1137-1154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38879746

RESUMEN

Flavonol and flavonoid compounds are important natural compounds with various biomedical activities. Therefore, it is of great significance to develop a strategy for the specific extraction of flavonol and flavonoid compounds. Quercetin is a well-studied flavonoid possessing many health benefits. This compound is a versatile antioxidant known to possess protective abilities against body tissue injury induced by pathological situations and various drug toxicities. Although quercetin is widely distributed in many plants, its content generally is not very high. Therefore, the specific extraction of quercetin as well as other flavonol and flavonoid compounds has profound significance. In this work, the quercetin molecularly imprinting polymer (QMIP) was successfully prepared, in which a typical flavonol quercetin was selected as the template molecule. QMIP was synthesized by performing the surface molecular imprinting technology on the surface of NH2-MIL-101(Fe). Our study results showed that QMIP exhibited quick binding kinetic behavior, a high adsorption capacity (57.04[Formula: see text]mg/g), and the specific recognition ability toward quercetin compared with structurally distinct compounds (selective [Formula: see text]). The specific adsorption ability of quercetin by QMIP was further explained using computation simulation that molecules with non-planar 3D conformations hardly entered the molecularly imprinted cavities on QMIP. Finally, QMIP was successfully used for the specific extraction of quercetin and five other flavonol and flavonoid compounds in the crude extracts from Sapium sebiferum. This study proposes a new strategy to synthesize the molecularly imprinted polymer based on a single template for enriching and loading a certain class of active ingredients with similar core structures from variable botanicals.


Asunto(s)
Flavonoides , Flavonoles , Impresión Molecular , Polímeros Impresos Molecularmente , Quercetina , Quercetina/aislamiento & purificación , Quercetina/química , Flavonoides/aislamiento & purificación , Flavonoides/química , Flavonoles/aislamiento & purificación , Flavonoles/química , Polímeros Impresos Molecularmente/química , Antioxidantes/aislamiento & purificación , Adsorción , Polímeros/química
8.
Int J Ophthalmol ; 17(6): 1094-1101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895688

RESUMEN

AIM: To investigate botulinum toxin A (BTXA) efficacy on small-angle (≤25Δ) acute acquired concomitant esotropia (AACE) in early-stage patients. METHODS: The electronic medical record data of AACE patients during March 2019 and June 2023 were collected in this retrospective and hospital-based cohort study. A total of 72 small-angle AACE patients received BTXA extraocular muscle injection. Patients were grouped by onset-to-treatment time (Group A: ≤6mo, Group B: >6mo). Deviation of esotropia, eye alignment and stereopsis were analyzed at the period of pre/post-injection (1wk, 1, 3, and 6mo). Orthophoria rate at 6mo (horizontal deviation <10Δ and binocular single vision) were considered as outcome index. RESULTS: There were no significant baseline differences (P>0.05) between two groups except onset-to-treatment time (2mo vs 11mo, P<0.001). Higher orthophoria rates were in Group A at last follow-up (94.74% vs 73.53%, P=0.013). Post-BTXA deviations of two groups at 1mo showed no difference (P>0.05); while in 3 and 6mo Group A was significantly smaller than group B (all P<0.001). No statistically significant differences were observed among all post-BTXA deviations of near and distance in Group A. In Group B, deviation at 3mo (near: 2Δ vs 0, P<0.001; distance: 4Δ vs 0, P<0.001) and 6mo (near: 6Δ vs 0, P<0.001; distance: 6Δ vs 0, P<0.001) was significant increased compared to deviation at 1wk after treatment. Group A showed better stereopsis recovery in last follow-up compared to Group B (80″ vs 200″, P=0.002). Both groups obtained improved stereopsis after treatment (Group A: 80″ vs 300″, P<0.001; Group B: 200″ vs 300″, P=0.037). CONCLUSION: BTXA is effective for AACE with small deviation (≤25Δ) in early stage. Delayed treatment (>6mo) may reduce BTXA efficacy. Early BTXA intervention benefits long-term eye alignment and stereopsis recovery.

9.
Biomed Pharmacother ; 176: 116837, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815290

RESUMEN

Hyperglycemic stress can directly lead to neuronal damage. The mechanosensitive ion channel PIEZO1 can be activated in response to hyperglycemia, but its role in hyperglycemic neurotoxicity is unclear. The role of PIEZO1 in hyperglycemic neurotoxicity was explored by constructing a hyperglycemic mouse model and a high-glucose HT22 cell model. The results showed that PIEZO1 was significantly upregulated in response to high glucose stress. In vitro experiments have shown that high glucose stress induces changes in neuronal cell morphology and membrane tension, a key mechanism for PIEZO1 activation. In addition, high glucose stress upregulates serum/glucocorticoid-regulated kinase-1 (SGK1) and activates PIEZO1 through the Ca2+ pool and store-operated calcium entry (SOCE). PIEZO1-mediated Ca2+ influx further enhances SGK1 and SOCE, inducing intracellular Ca2+ peaks in neurons. PIEZO1 mediated intracellular Ca2+ elevation leads to calcium/calmodulin-dependent protein kinase 2α (CaMK2α) overactivation, which promotes oxidative stress and apoptosis signalling through p-CaMK2α/ERK/CREB and ox-CaMK2α/MAPK p38/NFκB p65 pathways, subsequently inducing synaptic damage and cognitive impairment in mice. The intron miR-107 of pantothenic kinase 1 (PANK1) is highly expressed in the brain and has been found to target PIEZO1 and SGK1. The PANK1 receptor is activated by peroxisome proliferator-activated receptor α (PPARα), an activator known to upregulate miR-107 levels in the brain. The clinically used lipid-lowering drug bezafibrate, a known PPARα activator, may upregulate miR-107 through the PPARɑ/PANK1 pathway, thereby inhibiting PIEZO1 and improving hyperglycemia-induced neuronal cell damage. This study provides a new idea for the pathogenesis and drug treatment of hyperglycemic neurotoxicity and diabetes-related cognitive dysfunction.


Asunto(s)
Bezafibrato , Hiperglucemia , Canales Iónicos , Animales , Canales Iónicos/metabolismo , Ratones , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Masculino , Bezafibrato/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Calcio/metabolismo , Línea Celular , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , MicroARNs/metabolismo , MicroARNs/genética , Glucosa/metabolismo , Apoptosis/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
10.
Exp Ther Med ; 27(5): 221, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590563

RESUMEN

Ischemic cardiomyopathy (ICM) is a serious cardiac disease with a very high mortality rate worldwide, which causes myocardial ischemia and hypoxia as the main damage. Further understanding of the underlying pathological processes of cardiomyocyte injury is key to the development of cardioprotective strategies. Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of lipid hydroperoxides to lethal levels, resulting in oxidative damage to the cell membrane. The current understanding of the role and regulation of ferroptosis in ICM is still limited, especially in the absence of evidence from large-scale transcriptomic data. Through comprehensive bioinformatics analysis of human ICM transcriptome data obtained from the Gene Expression Omnibus database, the present study identified differentially expressed ferroptosis-related genes (DEFRGs) in ICM. Subsequently, their potential biological mechanisms and cross-talk were analyzed, and hub genes were identified by constructing protein-protein interaction networks. Ferroptosis features such as reactive oxygen species generation, changes in ferroptosis marker proteins, iron ion aggregation and lipid oxidation, were identified in the H9c2 anoxic reoxygenation injury model. Finally, the diagnostic ability of Gap junction alpha-1 (GJA1), Solute carrier family 40 member 1 (SLC40A1), Alpha-synuclein (SNCA) were identified through receiver operating characteristic curves and the expression of DEFRGs was verified in an in vitro model. Furthermore, potential drugs (retinoic acid) that could regulate ICM ferroptosis were predicted based on key DEFRGs. The present article presents new insights into the role of ferroptosis in ICM, investigating the regulatory role of ferroptosis in the pathological process of ICM and advocating for ferroptosis as a potential novel therapeutic target for ICM based on evidence from the ICM transcriptome.

11.
Huan Jing Ke Xue ; 45(5): 2881-2890, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629550

RESUMEN

Soil microbes are key drivers in regulating the phosphorus cycle. Elucidating the microbial mineralization process of soil phosphorus-solubilizing bacteria is of great significance for improving nutrient uptake and yield of crops. This study investigated the mechanism by which citrus cultivation affects the soil microbial acquisition strategy for phosphorus by measuring the abundance of the phoD gene, microbial community diversity and structure, and soil phosphorus fractions in the soils of citrus orchards and adjacent natural forests. The results showed that citrus cultivation could lead to a decrease in soil pH and an accumulation of available phosphorus in the soil, with a content as high as 112 mg·kg-1, which was significantly higher than that of natural forests (3.7 mg·kg-1). Citrus cultivation also affected the soil phosphorus fractions, with citrus soil having higher levels of soluble phosphorus (CaCl2-P), citrate-extractable phosphorus (Citrate-P), and mineral-bound phosphorus (HCl-P). The phosphorus fractions of natural forest soils were significantly lower than those of citrus soils, whereas the phoD gene abundance and alkaline phosphatase activity were significantly higher in natural forest soils than in citrus soils. High-throughput sequencing results showed that the Shannon diversity index of phosphate-solubilizing bacteria in citrus soils was 4.61, which was significantly lower than that of natural forests (5.35). The microbial community structure in natural forests was also different from that of citrus soils. In addition, the microbial community composition of phosphate-solubilizing bacteria in citrus soils was also different from that of natural forests, with the relative abundance of Proteobacteria being lower in natural forest soils than in citrus soils. Therefore, citrus cultivation led to a shift of soil microbial acquisition strategy for phosphorus, with external phosphorus addition being the main strategy in citrus soils, whereas microbial mineralization of organic phosphorus was the main strategy in natural forest soils to meet their growth requirements.


Asunto(s)
Fósforo , Suelo , Suelo/química , Microbiología del Suelo , Bacterias/genética , Bosques , Fosfatos , Citratos
12.
Rice (N Y) ; 17(1): 27, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607544

RESUMEN

Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.

13.
BMC Plant Biol ; 24(1): 348, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684961

RESUMEN

BACKGROUND: The La-related proteins (LARPs) are a superfamily of RNA-binding proteins associated with regulation of gene expression. Evidence points to an important role for post-transcriptional control of gene expression in germinating pollen tubes, which could be aided by RNA-binding proteins. RESULTS: In this study, a genome-wide investigation of the LARP proteins in eight plant species was performed. The LARP proteins were classified into three families based on a phylogenetic analysis. The gene structure, conserved motifs, cis-acting elements in the promoter, and gene expression profiles were investigated to provide a comprehensive overview of the evolutionary history and potential functions of ZmLARP genes in maize. Moreover, ZmLARP6c1 was specifically expressed in pollen and ZmLARP6c1 was localized to the nucleus and cytoplasm in maize protoplasts. Overexpression of ZmLARP6c1 enhanced the percentage pollen germination compared with that of wild-type pollen. In addition, transcriptome profiling analysis revealed that differentially expressed genes included PABP homologous genes and genes involved in jasmonic acid and abscisic acid biosynthesis, metabolism, signaling pathways and response in a Zmlarp6c1::Ds mutant and ZmLARP6c1-overexpression line compared with the corresponding wild type. CONCLUSIONS: The findings provide a basis for further evolutionary and functional analyses, and provide insight into the critical regulatory function of ZmLARP6c1 in maize pollen germination.


Asunto(s)
Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas , Polen , Zea mays , Zea mays/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Genoma de Planta , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
14.
Int Immunopharmacol ; 132: 111996, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38579563

RESUMEN

BACKGROUND: MiR-107 is reduced in sepsis and associated with inflammation regulation. Dietary supplementation with polyunsaturated fatty acids (ω3-PUFA) can increase the expression of miR-107; this study investigated whether the ω3-PUFA can effectively inhibit neuroinflammation and improve cognitive function by regulating miR-107 in the brain. METHODS: The LPS-induced mouse model of neuroinflammation and the BV2 cell inflammatory model were used to evaluate the effects of ω3-PUFA on miR-107 expression and inflammation. Intraventricular injection of Agomir and Antagomir was used to modulate miR-107 expression. HE and Nissl staining for analyzing hippocampal neuronal damage, immunofluorescence analysis for glial activation, RT-qPCR, and Western blot were conducted to examine miR-107 expression and inflammation signalling. RESULTS: The result shows that LPS successfully induced the mouse neuroinflammation model and BV2 cell inflammation model. Supplementation of ω3-PUFA effectively reduced the secretion of pro-inflammatory factors TNFα, IL1ß, and IL6 induced by LPS, improved cognitive function impairment, and increased miR-107 expression in the brain. Overexpression of miR-107 in the brain inhibited the nuclear factor κB (NFκB) pro-inflammatory signalling pathway by targeting PIEZO1, thus suppressing microglial and astrocyte activation and reducing the release of inflammatory mediators, which alleviated neuroinflammatory damage and improved cognitive function in mice. miR-107, as an intron of PANK1, PANK1 is subject to PPAR α Adjust. ω3-PUFA can activate PPARα, but ω3-PUFA upregulates brain miR-107, and PPARα/PANK1-related pathways may not be synchronized, and further research is needed to confirm the specific mechanism by which ω3-PUFA upregulates miR-107. CONCLUSION: The miR-107/PIEZO1/NFκB p65 pathway represents a novel mechanism underlying the improvement of neuroinflammation by ω3-PUFA.


Asunto(s)
Ácidos Grasos Omega-3 , Lipopolisacáridos , Ratones Endogámicos C57BL , MicroARNs , Factor de Transcripción ReIA , Regulación hacia Arriba , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Masculino , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Línea Celular , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Citocinas/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos
15.
Diagnostics (Basel) ; 14(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38472929

RESUMEN

The prevalence of substantial inflammation or fibrosis in treatment-naïve patients with chronic hepatitis B (CHB) and normal alanine transaminase (ALT) levels is high. A retrospective analysis was conducted on 559 consecutive patients with hepatitis B virus infection, who underwent liver biopsy, to investigate the value of noninvasive models based on routine serum markers for evaluating liver histology in CHB patients with normal or mildly elevated ALT levels and to provide treatment guidance. After comparing 55 models, we identified the top three models that exhibited excellent performance. The APGA model, based on the area under the receiver operating characteristic curve (AUROC), demonstrated a superior ability to evaluate significant (AUROC = 0.750) and advanced fibrosis (AUROC = 0.832) and demonstrated a good performance in assessing liver inflammation (AUROCs = 0.779 and 0.874 for stages G ≥ 2 and G ≥ 3, respectively). APGA also exhibited significant correlations with liver inflammation and fibrosis stage (correlation coefficients, 0.452 and 0.405, respectively (p < 0.001)). When the patients were stratified into groups based on HBeAg status and ALT level, APGA consistently outperformed the other 54 models. The other top two models, GAPI and XIE, also outperformed models based on other chronic hepatitis diseases. APGA may be the most suitable option for detecting liver fibrosis and inflammation in Chinese patients with CHB.

16.
Int J Biol Macromol ; 264(Pt 2): 130597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437940

RESUMEN

In this study, potato starch (PS)/naringenin (NAR) complex was prepared, and its properties and emulsification behavior were evaluated. The experimental results demonstrated that NAR successfully formed a complex with PS molecules through hydrogen bonds and other non-covalent interactions. The emulsifying capacity (ROV) of PS/NAR complex with 16 % composite ratio was 0.9999, which was higher than PS (ROV = 0.3329) (p < 0.05). Based on particle property analysis and molecular dynamics simulation, the mechanism of improving the emulsification performance might be the action of the benzene ring of NAR and intermolecular hydrogen bonding. In addition, the stability of the Pickering emulsions with PS/NAR complexes as emulgators was significantly improved. The emulsifying and rheological behavior of starch-based Pickering emulsions could be adjusted by changing the proportion of the complexes. Results demonstrated that the PS/NAR complexes might be a prospective stabilizer of Pickering emulsions based on starch material and might expand the use of PS in edible products.


Asunto(s)
Flavanonas , Solanum tuberosum , Emulsiones/química , Estudios Prospectivos , Almidón/química , Tamaño de la Partícula
17.
Oncogene ; 43(17): 1274-1287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443680

RESUMEN

Cumulative studies have established the significance of transfer RNA-derived small RNA (tsRNA) in tumorigenesis and progression. Nevertheless, its function and mechanism in pancreatic cancer metastasis remain largely unclear. Here, we screened and identified tiRNA-Val-CAC-2 as highly expressed in pancreatic cancer metastasis samples by tsRNA sequencing. We also observed elevated levels of tiRNA-Val-CAC-2 in the serum of pancreatic cancer patients who developed metastasis, and patients with high levels of tiRNA-Val-CAC-2 exhibited a worse prognosis. Additionally, knockdown of tiRNA-Val-CAC-2 inhibited the metastasis of pancreatic cancer in vivo and in vitro, while overexpression of tiRNA-Val-CAC-2 promoted the metastasis of pancreatic cancer. Mechanically, we discovered that tiRNA-Val-CAC-2 interacts with FUBP1, leading to enhanced stability of FUBP1 protein and increased FUBP1 enrichment in the c-MYC promoter region, thereby boosting the transcription of c-MYC. Of note, rescue experiments confirmed that tiRNA-Val-CAC-2 could influence pancreatic cancer metastasis via FUBP1-mediated c-MYC transcription. These findings highlight a potential novel mechanism underlying pancreatic cancer metastasis, and suggest that both tiRNA-Val-CAC-2 and FUBP1 could serve as promising prognostic biomarkers and potential therapeutic targets for pancreatic cancer.

18.
Opt Express ; 32(4): 5826-5836, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439299

RESUMEN

Mid-infrared (MIR) dual-comb spectroscopy (DCS) is a highly effective method for molecular metrology of rovibrational transition spectra in a quick accurate manner. However, due to limited comb frequency instability, manipulating coherence between two frequency combs to accomplish high-quality spectral analysis in the MIR region is a huge challenge. Here, we developed a comb-teeth resolved MIR DCS based on active phase control cooperating with a CWs-dependent (CWD) interferogram timing correction. Firstly, four meticulously engineered actuators were individually integrated into two near-infrared (NIR) seed combs to facilitate active coherence maintenance. Subsequently, two PPLN waveguides were adopted to achieve parallel difference frequency generations (DFG), directly achieving a coherent MIR dual-comb spectrometer. To improve coherence and signal-to-noise ratio (SNR), a CWD resampled interferogram timing correction was used to optimize the merit of DCS from 7.5 × 105 to 2.5 × 106. Meanwhile, we carried out the measurement of MIR DCS on the methane hot-band absorption spectra (v3 band), which exhibited a good agreement with HITRAN by a standard deviation on recording residual of 0.76%. These experimental results confirm that this MIR DCS with CWD interferogram timing correction has significant potential to characterize the rovibrational transitions of MIR molecules.

19.
Rice (N Y) ; 17(1): 21, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526756

RESUMEN

Strong seedling vigor is imperative to achieve stable seedling establishment and enhance the competitiveness against weeds in rice direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor in rice, but few genes for SL have been cloned so far. In the previous study, we identified two tightly linked and stably expressed QTLs for SL, qSL-1f and qSL-1d by genome-wide association study, and cloned the causal gene (LOC_Os01g68500) underlying qSL-1f. In the present study, we identify LOC_Os01g66100 (i.e. the semidwarf gene SD1), a well-known gene controlling plant height (PH) at the adult-plant stage, as the causal gene underlying qSL-1d through gene-based haplotype analysis and knockout transgenic verification. By measuring the phenotypes (SL and PH) of various haplotypes of the two genes and their knockout lines, we found SD1 and LOC_ Os01g68500 controlled both SL and PH, and worked in the same direction, which provided the directly genetic evidence for a positive correlation between SL and PH combined with the analysis of SL and PH in the diverse natural population. Moreover, the knockout transgenic experiments suggested that SD1 had a greater effect on PH compared with LOC_ Os01g68500, but no significant difference in the effect on SL. Further investigation of the pyramiding effects of SD1 and LOC_Os01g68500 based on their haplotype combinations suggested that SD1 may play a dominant role in controlling SL and PH when the two genes coexist. In this study, the effect of SD1 on SL at the seedling stage is validated. In total, two causal genes, SD1 and LOC_ Os01g68500, for SL are cloned in our studies, which controlled both SL and PH, and the suitable haplotypes of SD1 and LOC_ Os01g68500 are beneficial to achieve the desired SL and PH in different rice breeding objectives. These results provide a new clue to develop rice varieties for direct seeding and provide new genetic resources for molecular breeding of rice with suitable PH and strong seedling vigor.

20.
J Hazard Mater ; 469: 133999, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493627

RESUMEN

Thermal treatment can be an effective method for soil remediation, and numerical models play a crucial role in elucidating the underlying processes that affect efficacy. In this study, experiments were conducted to examine the low-temperature thermal treatment for removing n-hexane and n-octane from soil. The results showed that the removal of two alkanes followed the pseudo-first-order kinetics. Additionally, a quantitative relationship between kinetics constant and temperature was established. Based on experimental results, a simple mathematical model was presented via COMSOL Multiphysics 6.0. The processes considered in the model incorporated conductive and convective heat transfer, the vaporization latent heat, and the removal of organic contaminants which was quantified using an advection-dispersion equation combined with a pseudo-first-order kinetic. The developed model was first validated by a thermal treatment in a soil column, demonstrating conformity with the measured temperature and concentration values. Subsequently, the temporal and spatial changes in soil temperature and contaminant levels were evaluated for different heating temperatures. It was found that thermal conduction dominated heat transfer, whereas thermal convection caused by the migration of liquid water intensified when the temperature was higher than the boiling point. The completion time exhibited a correlation with the heating temperature. It was predicted that the time required to achieve a 90% removal efficiency could be shortened from 14 h to 9.5 h by elevating the heating temperature from 80 â„ƒ to 120 â„ƒ. The study also investigated the impact of the initial water content on heat transfer. It was observed that the saturated soil showed the slowest heating rate and the longest boiling stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...