Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 961194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465396

RESUMEN

Objective: This study aimed to investigate the clinical characteristics and risk factors of patients with hepatocellular carcinoma (HCC) with extrahepatic metastases (EHM) and to establish an effective predictive nomogram. Methods: Clinical and pathological data from 607 patients with hepatocellular carcinoma admitted to the Affiliated Hospital of Qinghai University between 1 January 2015 and 31 May 2018 were documented, as well as demographics, clinical pathological characteristics, and tumor-related parameters to clarify clinical risk factors for HCC EHM. These risks were selected to build an R-based clinical prediction model. The predictive accuracy and discriminating ability of the model were determined by the concordance index (C-index) and the calibration curve. The results were validated with a bootstrap resample and 151 patients from 1 June 2018 to 31 December 2019 at the same facility. Results: In multivariate analysis, independent factors for EHM were neutrophils, prothrombin time, tumor number, and size, all of which were selected in the model. The C-index in the EHM prediction model was 0.672 and in the validation cohort was 0.694. In the training cohort and the validation cohort, the calibration curve for the probability of EHM showed good agreement between the nomogram prediction and the actual observation. Conclusion: The extrahepatic metastasis prediction model of hepatocellular carcinoma constructed in this study has some evaluation capability.

2.
Front Immunol ; 13: 869365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967407

RESUMEN

Hepatic ischemia-reperfusion injury (IRI) is an adverse consequence of hepatectomy or liver transplantation. Recently, immune mechanisms involved in hepatic IRI have attracted increased attention of investigators working in this area. In specific, group 2 innate lymphoid cells (ILC2s), have been strongly implicated in mediating type 2 inflammation. However, their immune mechanisms as involved with hepatic IRI remain unclear. Here, we reported that the population of ILC2s is increased with the development of hepatic IRI as shown in a mouse model in initial stage. Moreover, M2 type CD45+CD11b+F4/80high macrophages increased and reached maximal levels at 24 h followed by a significant elevation in IL-4 levels. We injected exogenous IL-33 into the tail vein of mice as a mean to stimulate ILC2s production. This stimulation of ILC2s resulted in a protective effect upon hepatic IRI along with an increase in M2 type CD45+CD11b+F4/80high macrophages. In contrast, depletion of ILC2s as achieved with use of an anti-CD90.2 antibody substantially abolished this protective effect of exogenous IL-33 and M2 type CD45+CD11b+F4/80high macrophage polarization in hepatic IRI. Therefore, this exogenous IL-33 induced potentiation of ILC2s appears to regulate the polarization of CD45+CD11b+F4/80high macrophages to alleviate IRI. Such findings provide the foundation for the development of new targets and strategies in the treatment of hepatic IRI.


Asunto(s)
Interleucina-33 , Hepatopatías , Hígado , Macrófagos , Daño por Reperfusión , Animales , Inmunidad Innata , Interleucina-33/farmacología , Hígado/irrigación sanguínea , Hígado/inmunología , Hepatopatías/inmunología , Linfocitos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/inmunología
3.
Oxid Med Cell Longev ; 2022: 5188584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993024

RESUMEN

Liver transplantation (LT) is an effective strategy for the treatment of end-stage liver disease, but immune rejection remains a significant detriment to the survival and prognosis of these LT patients. While immune rejection is closely related to cytokines, the cytokines investigated within previous studies have been limited and have not included a systematic analysis of proinflammatory cytokines. In the present study, we used a protein chip system and proteomics to detect and analyze serum proinflammatory cytokines and differentially expressed proteins in liver tissue in a mouse model of liver transplantation. In addition, bioinformatics analysis was employed to analyze the proinflammatory cytokines and differential changes in proteins in response to this procedure. With these analyses, we found that serum contents of GC-CSF, CXCL-1, MCP-5, and CXCL-2 were significantly increased after liver transplantation, while IL-5, IL-10, and IL-17 were significantly decreased. Results from Gene Ontology (GO) and KEGG pathway analyses revealed that the cytokine-cytokine receptor, Th1/Th2 cell differentiation, and JAK-STAT signaling pathway were enriched in a network associated with the activation of immune response. Results from our proteomic analysis of liver tissue samples revealed that 470 proteins are increased and 50 decreased, including Anxa1, Anxa2, Acsl4, Sirpa, S100a8, and S100a9. KEGG pathway analysis indicated that the neutrophil extracellular trap formation, NOD-like receptor signaling pathway, and leukocyte transendothelial migration were all associated with liver transplant rejection in these mice. Bioinformatics analysis results demonstrated that CXCL-1/CXCL-2 and S100a8/S100a9 were the genes most closely related to the functions of neutrophils and the mononuclear phagocyte system. These findings provide new insights into some of the critical factors associated with liver transplant rejection and thus offer new targets for the treatment and prevention of this condition.


Asunto(s)
Citocinas , Trasplante de Hígado , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones , Proteómica , Transducción de Señal
4.
Int Immunopharmacol ; 110: 109028, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35803130

RESUMEN

Although double positive CD4+CD8+ T (DPT) cells has been reported to be involved in some diseases, their trajectory and function as associated with liver transplantation (LT) remain unclear. In the present study, we found that the number of DPT cells was increased in the blood and liver tissue of LT patients. Meanwhile, we compared the distribution of DPT cells in peripheral blood samples and in penetrating liver tissue between liver rejection versus non-rejection patients, as well as the proportion of DPT cells as a function of the extent of liver rejection. The number of DPT cells in the rejection group was significantly increased. An analysis of the spatial distance and correlations between DPT and Treg cells, revealed that these cells showed a high degree of contiguity. In a mouse liver transplant model, the number of DPT cells were significantly increased in liver tissue, and the number of CD8+ T cells gradually increased, while CD4+ T cells decreased as a function of time post-transplantation. Expression level of PD-1 in DPT cells also increased in a temporally-dependent manner post liver transplantation and the changes of PD-1+ DPT cells were related to the degree of liver transplant rejection. In DPT cells interacting with Treg, there was an increased expression of PD-1, which enhanced cellular exhaustion. In conclusion, the capacity for DPT cells to induce immune tolerance may represent a new and important protocol for use in targeting treatments for the prevention of liver transplant rejection.


Asunto(s)
Trasplante de Hígado , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Rechazo de Injerto , Ratones , Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...