Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 37(26): 7907-7918, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34153186

RESUMEN

Porous polymerized high internal phase emulsion (polyHIPE) monoliths are synthesized by using Span 80 with different cosurfactants. The results reveal that the void size can be reduced by employing cosurfactants, except for Tween 20. Furthermore, the openness of polyHIPEs changes by using different cosurfactants or by varying their concentration. To further investigate the effect of cosurfactants, we perform rheology measurements on the interface of the aqueous and oil phase. This study demonstrates the important role of interfacial elasticity in the successful preparation of polyHIPEs with different morphologies. Additionally, this study suggests that the increase in interfacial elasticity hinders the formation of interconnections between pores, known as windows. Finally, the compression test is performed to investigate the effect of the pore structure on the mechanical properties.

2.
Curr Zool ; 65(1): 43-52, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30697237

RESUMEN

How animals visually perceive the environment is key to understanding important ecological behaviors, such as predation, foraging, and mating. This study focuses on the visual system properties and visual perception of color in the largemouth bass Micropterus salmoides. This study (1) documents the number and spectral sensitivity of photoreceptors, (2) uses these parameters to model visual perception, and (3) tests the model of color perception using a behavioral assay. Bass possess single cone cells maximally sensitive at 535 nm, twin cone cells maximally sensitive at 614 nm, and rod cells maximally sensitive at 528 nm. A simple model of visual perception predicted that bass should not be able to discern between chartreuse yellow and white nor between green and blue. In contrast, bass should be able to discern red from all achromatic (i.e., gray scale) stimuli. These predictions were partially upheld in behavioral trials. In behavioral trials, bass were first trained to recognize a target color to receive a food reward, and then tested on their ability to differentiate between their target color and a color similar in brightness. Bass trained to red and green could easily discern their training color from all other colors for target colors that were similar in brightness (white and black, respectively). This study shows that bass possess dichromatic vision and do use chromatic (i.e., color) cues in making visual-based decisions.

3.
Ecol Evol ; 8(18): 9282-9294, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30377500

RESUMEN

Behavioral isolation is thought to arise early in speciation due to differential sexual and/or natural selection favoring different preferences and traits in different lineages. Instead, behavioral isolation can arise due to reinforcement favoring traits and preferences that prevent maladaptive hybridization. In darters, female preference for male coloration has been hypothesized to drive speciation, because behavioral isolation evolves before F1 inviability. However, as with many long-lived organisms, the fitness of second-generation hybrids has not been assessed because raising animals to adulthood in the laboratory is challenging. Of late, reinforcement of male preferences has been implicated in darters because male preference for conspecific females is high in sympatry but absent in allopatry in multiple species pairs. The hypothesis that reinforcement accounts for behavioral isolation in sympatry assumes that hybridization and postzygotic isolation are present. Here, we used genomic and morphological data to demonstrate that hybridization is ongoing between orangethroat and rainbow darters and used hybrids collected from nature to measure postzygotic barriers across two hybrid generations. We observed sex ratio distortion in adult F1s and a dramatic reduction in backcross survival. Our findings indicate that selection to avoid hybridization promotes the evolution of male-driven behavioral isolation via reinforcement in this system.

4.
Evolution ; 71(10): 2428-2444, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28776645

RESUMEN

Determining which reproductive isolating barriers arise first between geographically isolated lineages is critical to understanding allopatric speciation. We examined behavioral isolation among four recently diverged allopatric species in the orangethroat darter clade (Etheostoma: Ceasia). We also examined behavioral isolation between each Ceasia species and the sympatric rainbow darter Etheostoma caeruleum. We asked (1) is behavioral isolation present between allopatric Ceasia species, and how does this compare to behavioral isolation with E. caeruleum, (2) does male color distance and/or genetic distance predict behavioral isolation between species, and (3) what are the relative contributions of female choice, male choice, and male competition to behavioral isolation? We found that behavioral isolation, genetic differentiation, and male color pattern differentiation were present between allopatric Ceasia species. Males, but not females, discerned between conspecific and heterospecific mates. Males also directed more aggression toward conspecific rival males. The high levels of behavioral isolation among Ceasia species showed no obvious pattern with genetic distance or male color distance. However, when the E. caeruleum was included in the analysis, an association between male aggression and male color distance was apparent. We discuss the possibility that reinforcement between Ceasia and E. caeruleum is driving behavioral isolation among allopatric Ceasia species.


Asunto(s)
Conducta Animal , Evolución Molecular , Perciformes/genética , Aislamiento Reproductivo , Pigmentación de la Piel/genética , Animales , Femenino , Masculino , Perciformes/fisiología
5.
Ecol Evol ; 6(11): 3513-3522, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27127609

RESUMEN

Elaborate, sexually dimorphic traits are widely thought to evolve under sexual selection through female preference, male-male competition, or both. The orangethroat darter (Etheostoma spectabile) is a sexually dichromatic fish in which females exhibit no preferences for male size or coloration. We tested whether these traits affect individual reproductive success in E. spectabile when multiple males are allowed to freely compete for a female. The quality and quantity of male coloration were associated with greater success in maintaining access to the female and in spawning as the primary male (first male to participate). On the other hand, sneaking behavior showed little correlation with coloration. Male breeding coloration in E. spectabile may therefore demonstrate how intrasexual competition can be a predominant factor underlying the evolution of male ornaments.

6.
J Exp Biol ; 209(Pt 23): 4809-18, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17114413

RESUMEN

Electrocommunication signals of electric fish vary across species, sexes and individuals. The diversity of these signals and the relative simplicity of the neural circuits controlling them make them a model well-suited for studying the mechanisms, evolution and sexual differentiation of behavior. In most wave-type gymnotiform knifefishes, electric organ discharge (EOD) frequency and EOD modulations known as chirps are sexually dimorphic. In the most speciose gymnotiform family, the Apteronotidae, EOD frequency is higher in males than females in some species, but lower in males than females in others. Sex differences in EOD frequency and chirping, however, have been examined in only three apteronotid species in a single genus, Apteronotus. To understand the diversity of electrocommunication signals, we characterized these behaviors in another genus, Adontosternarchus. Electrocommunication signals of Adontosternarchus devenanzii differed from those of Apteronotus in several ways. Unlike in Apteronotus, EOD frequency was not sexually dimorphic in A. devenanzii. Furthermore, although A. devenanzii chirped in response to playbacks simulating conspecific EODs, the number of chirps did not vary with different stimulus frequencies. A. devenanzii chirps also differed in structure from Apteronotus chirps. Whereas Apteronotus species produce functionally distinct chirp types differing in frequency modulation (FM), A. devenanzii produced only high-frequency chirps that had either single or multiple frequency peaks. Males produced more multi-peaked chirps than females. Thus, the temporal structure of chirps, rather than the amount of FM, delineated chirp types in A. devenanzii. Our results demonstrate that the structure, function and sexual dimorphism of electrocommunication signals are evolutionary labile in apteronotids and may be useful for understanding the diversity of sexually dimorphic behavior.


Asunto(s)
Comunicación Animal , Pez Eléctrico/fisiología , Caracteres Sexuales , Animales , Femenino , Masculino , Reproducción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA